4–9 Mar 2018
Winklmoosalm
Europe/Berlin timezone

Occupied and unoccupied electronic structure of two-dimensional oxide quasicrystal

8 Mar 2018, 16:35
35m
Winklmoosalm

Winklmoosalm

Dürrnbachhornweg 6 83242 Reit im Winkl http://www.winklmoosalm.com/hotel/

Speaker

Dr Cheng-Tien Chiang (Martin-Luther-Universität Halle-Wittenberg and Max-Planck-Institut für Mikrostrukturphysik)

Description

In solid state physics, the electronic structure is often explained by examples of periodic systems. In reality, quasicrystals of metallic alloys with aperiodic atomic structure are well-known, whereas their valence electronic structure is still under debate [1]. Moreover, only very recently their unoccupied electronic structure has been studied [2]. In this contribution, we present angle-resolved photoelectron spectroscopy on the occupied and unoccupied electronic structure of a two-dimensional oxide quasicrystal (OQC), which is formed by the rewetting process of barium titanate on Pt(111) [3,4].

The occupied valence bands are investigated by the momentum microscope with He I excitation, and the photoelectron distribution over the whole hemisphere above the surface is mapped [5]. We decompose the energy-dependent photoelectron patterns according to symmetry considerations. As a results, clear dispersion of the oxygen 2p bands with a bandwidth of more than 0.5 eV at 5.2 eV below the Fermi level can be identified. Moreover, localized oxygen 2p states are observed at around 4 and 6 eV below the Fermi level, which are comparable to the O non-bonding and the Ti-O dpσ bands in bulk, respectively [6].

As preliminary studies on the unoccupied electronic states and their femtosecond dynamics, two-photon photoemission spectroscopy using a megahertz fiber laser system is performed. With a pump and probe photon energy of around 3.9 and 1.7 eV, the n=1 and 2 image potential states on OQC are identified at around 3.5 and 3.6 eV above the Fermi level.

[1] V. A. Rogalev, O. Gröning, R. Widmer, J. H. Dil, F. Bisti, L. L. Lev, T. Schmitt, and V. N. Strocov, Nat. Comm. 6, 8607 (2015).
[2] M. Maniraj, A. Rai, S. R. Barman, M. Krajčí, D. L. Schlagel, T. A. Lograsso, K. Horn, Phys. Rev. B 90,115407 (2014).
[3] S. Förster, K. Meinel, R. Hammer, M. Trautmann, and W. Widdra, Nature 502, 215 (2013).
[4] S. Förster, J. I. Flege, E. M. Zollner, F. O. Schumann, R. Hammer, A. Bayat, K.-M. Schindler, J. Falta, and W. Widdra, Ann. Phys. 529, 1600250 (2017).
[5] C. Tusche, A. Krasyuk, and J. Kirschner, Ultramicroscopy 159, 520 (2015).
[6] S. Robey, L. Hudson, V. Henrich, C. Eylem, and B. Eichhorn, J. Phys. Chem. Solids 57, 1385 (1996).

Primary authors

Dr Cheng-Tien Chiang (Martin-Luther-Universität Halle-Wittenberg and Max-Planck-Institut für Mikrostrukturphysik) Dr Martin Ellguth (Max-Planck-Institut für Mikrostrukturphysik) Dr Florian O. Schumann (Martin-Luther-Universität Halle-Wittenberg) Dr Christain Tusche (Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich) Dr Stefan Förster (Martin-Luther-Universität Halle-Wittenberg) Richard Kraska (Martin-Luther-Universität Halle-Wittenberg) Prof. Wolf Widdra (Martin-Luther-Universität Halle-Wittenberg and Max-Planck-Institut für Mikrostrukturphysik)

Presentation materials

There are no materials yet.