

The EPICS Data Diode

G.Ferro

F.Sartori, N.Cruz, J.Antti, A.Duarte

Remote participation NOT Remote Control

To minimize the risks in large experimental facilities, high level of coordination is needed.

Main coordination center = CONTROL ROOM

REQUIREMENTS:

- Stringent rules for allowing external connections to the facility.
- Remote operation not allowed.
- To allow remote monitoring, traffic must be one-directional to the external server(s).

Current State and needs

The DIODE

Objectives:

A mean to send the data out efficiently

Implements:

- One-way gateway between two networks via a third one (for instance internet)
- Cannot be configured to let data in the opposite direction
 Requires:
- Minimum network security compromise: only ability to connect to external server (like a Browser)

Currently uses HTTP so that we can go through proxies. Multiple parallel connections to handle network latencies.

The DIODE

Diode Sender

INITIALIZATION PHASE EpicsParserAndSubscriber::Initialise(*) Configure the EpicsParserAndSubscriber object Configure the PrioritySender object PrioritySender::Initialise(*) Reads the PVs names and launches a thread to create the subscriptions EpicsParserAndSubscriber::ParseAndSubscribe(*) PrioritySender::GetDataSource(*) The PrioritySender gets a pointer to the EpicsParserAndSubscriber PrioritySender::Start() GetValueCallback EXECUTION PHASE Thread 1 Copies the PVs value into internal Connection N Build the HTTP message memory when the it changes Synchronise() Connection N+1 PrioritySenderCycleLoop Build the HTTP message Calls Synchronise() to get the PVs Sorts the list to push the changed Thread 3 PVs to the first position of the queue Connection N+2 Build the HTTP message Triggers the threads then waits for the next cycle

Diode Receiver

- Configurable number of connections.
- Configurable send rate, the PVs changed during the period are sent first.
- Configurable caput rate on the receiver. The PV timestamp is preserved.

The EPICS Data Diode

CONCLUSIONS

- The Diode provides an immediate and safe solution to monitor machine operations remotely.
- The use of the MARTe2 lib for its implementation makes it easy to configure and adaptable for different use cases (push the PVs to serial, to reflective memory, etc.)
- It is suitable for long-distance communication as well as for local ones (i.e technical to office network).
- Currently it reads/writes to EPICS through the channel access and uses softIOCs to replicate the sender EPICS environment on the receiver.
- The first version is already being employed. Currently it is passing through the QA process, to find out what can be improved.