
Security Hardening for
EPICS/RTEMS
GEDA R E BLOOM

UNI VERS I TY OF COLORA DO COLORA DO SPRI NGS

EPI CS COLLABORATION FA LL 2020 M EET I N G

EPICS is
insecure

EPICS is
insecure?

Industrial Control System Vulnerabilities
Source: https://ics-cert.kaspersky.com/reports/2020/04/24/threat-landscape-for-industrial-automation-systems-vulnerabilities-

identified-in-2019/. Threat landscape for industrial automation systems, 2019.

https://ics-cert.kaspersky.com/reports/2020/04/24/threat-landscape-for-industrial-automation-systems-vulnerabilities-identified-in-2019/

EPICS is not protected against sophisticated
attackers and unsophisticated interns
C/C++ will never (!) be secure

May be capable of injecting bugs in EPICS software products

May be capable of launching DOS/DDOS against OPI/PV Gateway/CA networks

May be capable of subverting data quality and provenance of PV data

Goal: provide resiliency for EPICS throughout software development lifecycle

Security
Testing

Small-scale
infrastructure

Static Analysis

Fuzzing
Formal

Methods

Small-Scale Research Infrastructure
Problem: Want to analyze security problems and solutions with lean supplies budget

◦ Academic lean budget: Supply costs around $1-2K

Goals:
◦ Run “realistic” PV/asyn workloads

◦ Evaluate runtime/security performance of modifications to EPICS (IOCs: RTEMS, Linux)

◦ Student setup and maintenance

Real-time Analytics
with Open Powerlink

Investigating system delay, network delay, actuation delay
◦ System delay: background tasks, user / kernel space

◦ Propagation delay: interference in wire

◦ Actuation delay: servo response time; screw, motor

Real-time analytics in an EPICS environment
◦ IOCs → OPI → On-Site Private Cloud (OSPC)

◦ Extension of our baremetal PowerLink stack
◦ Video → PowerLink management node polling controlled node

Prajjwal Dangal, Gedare Bloom, Towards Industrial Security Through Real-
time Analytics, in 2020 IEEE 23rd International Symposium on Real-Time
Distributed Computing (ISORC), pp. 156-157, 2020.

Bluesky
testbed-free
infrastructure

EPICS Simulation package with utilities for data
acquisition, exporting, noise setting [2]

Ophyd provides EpicsMotors, Signal classes backed by PVs

Databroker, event driven

No physical test-bed required

Easy to reconfigure, update

https://blueskyproject.io/

Current Approach with PowerLink
By default,

modules are
dynamically

loaded. For lower
latency:

Use statically, *.a
files

kernel space EPICS
driver and kernel

space Open
Powerlink stack [1]

EPICS data through
Bluesky, Ophyd

Bluesky has some
curve fitting

callbacks

Outlier detection
through Least

Trimmed Squares
Regression could

be added

beamlineconfiguration.py is the king ☺

Bluesky, “bluesky/tutorials,” https://github.com/bluesky/tutorials

Next Steps for Research Infrastructure

Using Javascript for
Bluesky’s data model
backend as it uses
documents

Port data analysis
packages related to linear,
logistic regression, etc.

Working with EPICS and
RTEMS for real-time
analytics

Decorate, modify Bluesky
code through Numba,
and Numpy

Static Analysis
✔ Analyze the software without executing
x Cannot find runtime and configuration errors
x Cannot test EPICS network

First approach: Coverity
Mature product
Open-source friendly

Kind of

Hooks with Travis-ci

Pain to extract defects
Investigating with RTEMS

Second approach: clang-analyzer
Active open-source project

Lot of other analyzers – also trying
Static Value flow (SVF) analyzer

Easy to work with
Defect report is like compiler

Must compile with clang
Used it with RTEMS
Hopeful to apply to EPICS soon!

Security Fuzzing
✔ Detect security loopholes and vulnerabilities on EPICS System
✔ Can detect zero-day vulnerabilities
x Requires significant time to detect Bugs and vulnerabilities

Current state of the art is American Fuzzy Lop (AFL) fuzzer using mutation-based fuzzing
◦ As opposed to generation-based fuzzing

Our approach aims to improve AFL and apply to EPICS modules and CA
◦ Extension of AFL, AFL-NET, MOPT, UniFuzz and MultiFuzz to work for CA

Improve Fuzzing with
Static Analysis

AFL running on softIoc

Current Research:
Fuzzing Channel Access
The Fuzzer will have 1 scheduler/ server with N number of
fuzzer (clients)

Each N clients can have M instances of Fuzzer (modified
version of AFL)

Overload the network to investigate network vulnerabilities

Compare with existing network mutation fuzzer

Challenge: How to store multiple connections and synchronize
paths covered and vulnerabilities found between fuzzers?

Formal Methods
THEOREM PROVING

Proof assistance to confirm/deny theorems
formulated about system

◦ Manually labor intensive to formulate theorems
so prover can reason over them

Size still a problem. Current approaches
handle ~10k’s lines of code

Strong expressivity in higher order logic

A few stable tools available
◦ Coq, HOL4, Isabella, PVS

MODEL CHECKING

Automatically check (verify) properties over an
abstraction of system

◦ Brute force/heuristic approach without manual
intervention

Constrained by size – state space explosion

Limited expressivity based on first order logic
◦ Usually enough for safety properties

Widespread tools available
◦ SPIN, TLA+, UPAAL, PRISM, NuSMV, …

Our Approach
Use model checking to find bugs
and concurrency problems

◦ Analyze PV Gateway using SPIN
model checker

Why PV Gateway?
Widely used in EPICS community

Interesting (to us) Threat Model:
◦ Possibility of Dolev-Yao adversary

◦ Network-level control (eavesdrop, add/drop messages)

◦ Written in C and all its glory

◦ Uses UDP → potential vulnerability to stateless
attacks and UDP amplification attacks

Next Steps in Formal Methods
Finish initial modeling of PV Gateway
◦ Formulate some interesting properties to check if:

◦ MEDM(client) can be restricted in their access to the PV

◦ Gateway internal PV used for diagnostic purposes cannot be used as a backdoor?

◦ PV_obj is destroyed after 120s unless it is connected?

◦ PV_obj in inactive state for more than 7200s.

◦ Transition between states are correct. For example, PV_obj in dead state should not be active in less
than 120s.

Begin to model state space of CA/PVA protocols

Conclusion
Much work remaining to be done in these areas

Some next steps
◦ Security in open-source SDLC with signed commits, releases

◦ Need to discuss with EPICS core and RTEMS maintainers

◦ Porting secure communications (dropbear ssh)

◦ Memory protection – Recurrent topic in RTEMS
◦ Looking at how to create a model that fits across IOCs

◦ Secure Boot
◦ ditto

