
Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Bluesky at BESSY II
A measurement script metamorphosis

Pierre Schnizer,
Luis Vera Ramirez, Thomas Birke, Tom Mertens, Markus Ries

Helmholtzzentrum Berlin

pierre.schnizer@helmholtz-berlin.de

EPICS fall meeting 19th – 23rd September 2020

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Contents

Introduction

Environment

Commissioning script: conversion

Modules

Conclusions

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Introduction

Control system newbie

I Light optics, magnets, test station experience

I Joined BESSY II/VSR 2017

I First contact → synchrotron light source machine, BESSY II

I Control system newbie: → lifetime tool

Bluesky: Learning

I Jan 2019 ← info from Roland

I Start using FakeEpicsSignals
I Learned from:

I Docs
I gitter:

I Listening
I Questions (Thanks for the quick responses!)

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

BESSY II Control room environment

Environment
I Debian stretch

I Singularity container
for python3.7

I (py)mongodb for data
storage

I Lots of epics devices
and tools

A big thanks to BESSY II
operation / control system
responsibles

Roland → bluesky, Thanks!

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Accelerator tools

Transverse optics

I Response matrix measurement

I Beam based alignment
measurement

I Simple scripts
I “synchronous” ramp down of

sextupoles
I Life time device

Encapsulated devices (Ophyd)

I Power supplies

I Beam position monitors,

I RF system

I Tune measurement, regulation

I Topup engine (beam current
control)

I master clock

Dedicated plans

I per step plans for switching
multiplexers, tune correction,
topping up beam current

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Plan stub example: beam based alignment

Beam based alignment

I each quadrupole → ±∆I → axis
I measurement:

I multiplexer: → connects to each
quadrupole

I excites some current, up, down
I BPM readings stored
I analysis → ideal, golden orbit

BBA: Measurement implementation

Per step plan

Beam based alignment

BBA: measurement implementation

I ophyd devices: Multiplexer, piggy
pack power converter: → devices
in a tree

I measurement: bluesky plan to loop
over quadrupoles, currents

I data storage: data broker →
monogodb, uid in run book

Per step plan

Beam based alignment

BBA: Measurement implementation

Per step plan

I called at each step

I thus possible:
I adjust tune at 0 current →

mitigate hysteresis effect
I → no beam loss during first run
I executed at full current

import bluesky.plan_stubs as bps

import bluesky.plans as bp

def per_step(detectors, step, pos_cache):

motors = step.keys()

yield from bps.move_per_step(step, pos_cache)

yield from bps.trigger_and_read(list(detectors) + list(motors))

current = step.get(mux.power_converter, None)

dIa = np.absolute(current)

check_tune = False

if dIa > 1e-3:

Power supplied powered ... no tune checking

return

Readjusting tune

yield from bps.mv(tune_fb.hor, tune_h, tune_fb.vert, tune_v)

Reinjecting current if required

yield from bps.mv(topup, True)

Outer product: spans "3D" space

loop_I = cycler(mux.power_converter, [0, dI, 0, -dI, 0])

quads = cycler(mux.selector, quadrupole_names)

repeat = cycler(CounterSink, range(n_meas))

RE(bp.scan_nd, det, loop_I * quads * repeat, per_step=per_step)

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Plan stub example: beam based alignment

Beam based alignment

I each quadrupole → ±∆I → axis
I measurement:

I multiplexer: → connects to each
quadrupole

I excites some current, up, down
I BPM readings stored
I analysis → ideal, golden orbit

BBA: Measurement implementation

Per step plan

Beam based alignment

BBA: measurement implementation

I ophyd devices: Multiplexer, piggy
pack power converter: → devices
in a tree

I measurement: bluesky plan to loop
over quadrupoles, currents

I data storage: data broker →
monogodb, uid in run book

Per step plan

Beam based alignment

BBA: Measurement implementation

Per step plan

I called at each step

I thus possible:
I adjust tune at 0 current →

mitigate hysteresis effect
I → no beam loss during first run
I executed at full current

import bluesky.plan_stubs as bps

import bluesky.plans as bp

def per_step(detectors, step, pos_cache):

motors = step.keys()

yield from bps.move_per_step(step, pos_cache)

yield from bps.trigger_and_read(list(detectors) + list(motors))

current = step.get(mux.power_converter, None)

dIa = np.absolute(current)

check_tune = False

if dIa > 1e-3:

Power supplied powered ... no tune checking

return

Readjusting tune

yield from bps.mv(tune_fb.hor, tune_h, tune_fb.vert, tune_v)

Reinjecting current if required

yield from bps.mv(topup, True)

Outer product: spans "3D" space

loop_I = cycler(mux.power_converter, [0, dI, 0, -dI, 0])

quads = cycler(mux.selector, quadrupole_names)

repeat = cycler(CounterSink, range(n_meas))

RE(bp.scan_nd, det, loop_I * quads * repeat, per_step=per_step)

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Plan stub example: beam based alignment

Beam based alignment

I each quadrupole → ±∆I → axis
I measurement:

I multiplexer: → connects to each
quadrupole

I excites some current, up, down
I BPM readings stored
I analysis → ideal, golden orbit

BBA: Measurement implementation

Per step plan

Beam based alignment

BBA: measurement implementation

I ophyd devices: Multiplexer, piggy
pack power converter: → devices
in a tree

I measurement: bluesky plan to loop
over quadrupoles, currents

I data storage: data broker →
monogodb, uid in run book

Per step plan

Beam based alignment

BBA: Measurement implementation

Per step plan

I called at each step

I thus possible:
I adjust tune at 0 current →

mitigate hysteresis effect
I → no beam loss during first run
I executed at full current

import bluesky.plan_stubs as bps

import bluesky.plans as bp

def per_step(detectors, step, pos_cache):

motors = step.keys()

yield from bps.move_per_step(step, pos_cache)

yield from bps.trigger_and_read(list(detectors) + list(motors))

current = step.get(mux.power_converter, None)

dIa = np.absolute(current)

check_tune = False

if dIa > 1e-3:

Power supplied powered ... no tune checking

return

Readjusting tune

yield from bps.mv(tune_fb.hor, tune_h, tune_fb.vert, tune_v)

Reinjecting current if required

yield from bps.mv(topup, True)

Outer product: spans "3D" space

loop_I = cycler(mux.power_converter, [0, dI, 0, -dI, 0])

quads = cycler(mux.selector, quadrupole_names)

repeat = cycler(CounterSink, range(n_meas))

RE(bp.scan_nd, det, loop_I * quads * repeat, per_step=per_step)

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Callback based solvers

Numerical minimisers
I call back orientied implementation

I “full control”

Bluesky plans

I generator based

I yielding messages → executed by
RunEngine

I result available afterwards

Possible solution

Solver and RunEngine in different
threads, bridged by a bcib bridge

Example

I Callback:
def _stub(detectors, motor, val):

yield from bps.mv(motor, val)

r = (yield from

bps.trigger_and_read(detectors + [motor])

return r

def cb(val):

Typically some move command required

cmd = partial(_stub, dets, mot, val)

r_dic = bridge.submit(cmd)

Extract return values from dictionary

return r

I plan stub
yield from bcib.bridge_plan_stub(bridge)

I bridge creation:
bridge = setup_threaded_callback_iterator_bridge()

Software status: alpha

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Naus: an OpenAI compatible environment

Implementation

I Actuators for state and actions

I Typically: Bluesky returns more
data than required

I Dedicated methods for selecting
required data

Design

I Bluesky plans:
I Stepping
I Resetting environment

I Dedicated methods: data
extraction
I state
I reward

API

storeInitialState default: executes plan
to retrieve current state of
motors, extract “state at
start of epoch”

getStateToResetTo returns state of
“start” of epoch

computeState : compute state from
detector readings

computeRewardTerminal compute
reward, epoch finished

First use

See Luis talk!

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Naus: Open points

I Gain experience with API

I implement callbacks: Keras compatible → available for bluesky liveplots

I Gain operation experiences
I Decrease latencies:

I 50 ms reached up to now in “real world” reinforcement learning application
I Latency estimates (yappi; “time.time”, debian stable, vanilla kernel, intel i7

3.4 GHz cpu):
I RunEngine: 1 ms
I Naus, logging disabled: 5 ms
I Ømq communication: 0.2 ms

I Next steps: latency reduction, EPICS as communication layer

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Digital twin development

Simulator Machine

Ophyd

Bluesky run engine
Data
base

keras

nausbcib

(scipy)
optimizers

Data
broker

Config
database

Simulator G Machine G

Applications
Typhos PyDM

Space
Translators

Ophyd drivers

Backend

Epics Middle layer

Middle layer

Application layer

async

synchron

Generators

Tools layer

Similar implementations at other labs (e.g. ESRF, ALS-(U)),
Implementation started at BESSY II → tool for BESSY III
Interest on collaborations

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Lessons learned

Learning curve

I Device programmers
I python experience: object oriented

programming
I event / call back patterns
I personal recommendation: implement

stop method (first)

I Plan programmers
I python experience: generators

I Users
I python experience: coding scripts

A little obstacle
I “epics.PV”: for simple measurements →

follow “manual work flow”
I Bluesky → “event” based → requires

adaption

“Selling” Arguments

I Document structure → automatic
storage

I Replay → life plot development
I Device drivers → make available
I Pay back:

I Complex devices → details abstracted
by standard interface

I Large number of variables → device
tree

I Sophistcated plan stubs → reuse in
different scripts

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Conclusion

I Bluesky / Ophyd
I Higher level of abstraction
I Simplify measurement scripts

I BESSY II: Bluesky firm place for
machine commissioning
I Building device library
I Measurement scripts

I Looking into:
I Integrating solvers
I Machine learning (see Luis talk)
I Digital twin development

Thanks to
I bluesky / ophyd team for support,

direct question answering

I All for introduction into machine,
EPICS,. . . , resetting the machine,
handling alarms

I All keeping BESSY II running and
serviced!

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Outlook

Aurea prima sata est aetas, quae vindice nullo,
sponte sua, sine lege fidem rectumque colebat.
Poena metusque aberant, nec verba minantia fixo
aere legebantur, nec supplex turba timebat
iudicis ora sui, sed erant sine vindice tuti

Ovid, Metamorphosis

I FHI, BESSY: interested to form a
Berlin Special Interest Group

I target: short loop communication,
within similar time zone

I thanks: to the open community @
DAMA, Slack

image source: Wikipedia

Bluesky:
Metamorphsis

P. Schnizer et al.

Introduction

Environment

Commissioning
script: conversion

Modules

Conclusions

Outlook

Aurea prima sata est aetas, quae vindice nullo,
sponte sua, sine lege fidem rectumque colebat.
Poena metusque aberant, nec verba minantia fixo
aere legebantur, nec supplex turba timebat
iudicis ora sui, sed erant sine vindice tuti

Ovid, Metamorphosis

I FHI, BESSY: interested to form a
Berlin Special Interest Group

I target: short loop communication,
within similar time zone

I thanks: to the open community @
DAMA, Slack

image source: Wikipedia

	Introduction
	Environment
	Commissioning script: conversion
	Modules
	Conclusions

