Speaker
Description
Beyond chiral analysis, Enantiomer-Specific State Transfer (ESST) enables the control and manipulation of chiral molecules at the quantum level. Using tailored microwave fields, a chosen rotational state can be enriched for a selected enantiomer. Although ESST can theoretically achieve 100% transfer efficiency, early ESST studies reported only modest state-specific enantiomeric enrichment, limited to a few percent [1,2]. This limitation was primarily due to the thermal population of rotational states [1,2] and the spatial degeneracy of these states [3].
To mitigate the effect of thermal population, we developed a new experimental scheme combining ultraviolet radiation with microwave spectroscopy. This approach allows for depleting one of the rotational states before the ESST process [4,5], significantly enhancing transfer efficiency. This advancement has enabled quantitative studies of ESST under various conditions [4,5].
[1] S. Eibenberger, J. Doyle, and D. Patterson, Phys. Rev. Lett. 118, 123002 (2017)
[2] C. Pérez, A. L. Steber, S. R. Domingos, A. Krin, and M. Schnell, Angew. Chem. Int. Ed. 56, 12512 (2017)
[3] K. K. Lehmann, J. Chem. Phys. 149, 094201 (2018)
[4] J. H. Lee, J. Bischoff, A. O. Hernandez-Castillo, B. Sartakov, G. Meijer, and S. Eibenberger-Arias, Phys. Rev. Lett. 128, 173001 (2022)
[5] J. H. Lee, J. Bischoff, A. O. Hernandez-Castillo, E. Abdiha, B. Sartakov, G. Meijer, and S. Eibenberger-Arias, New J. Phys. 26, 033015 (2024)