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“Smeared-Out” Self-Energies

I. Tanabe, et al. 
J Phys-Cond. Mat 28, 345503 (2016).
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gap of Ge (see [41] and references therein). They amount to
(at Tx6 K): isotope shift Z0.36 meV/amu, renormaliza-
tionZK53 meV. The Pässler fit to uind(T) yieldsK52 meV
for the renormalization [40], also in good agreement with
the value obtained from the isotope effect. For the direct gap
of germanium u0, a value of 0.49 meV/amu is reported in
[41]. The corresponding gap renormalization (obtained by
using the MK1/2 law) is K71 meV, whereas a value of K
60 meV is obtained by ‘eyeballing’ the linear asymptote of
u0(T) in Fig. 6.44 of [14]. An average renormalization value
of K62 meV has been calculated by LCAO techniques in
[17]. This gap exhibits a spin-orbit splitting D0 and the
corresponding isotope effect has been measured for both
components, E0 and E0CD0 [41]. Surprisingly, the effect on
the E0CD0 gap of germanium has been found to be 30%
larger than that on E0, a fact which cannot be explained on
the basis of our present understanding of the spin-orbit
interaction. Actually, the authors of [34] have recently
found [43] that the spin-orbit split component of the uind of
Si shows the same isotope effects as the main component, a
fact which suggests that the isotope effect measurements of
E0CD0 presented in [41] should be repeated.

5. Diamond

5.1. Dependence of the edge luminescence frequency on
temperature and isotopic mass

The luminescence at the indirect exciton of diamond

(which is silicon-like) is shown in Fig. 6 [46]. The curve

through the experimental points corresponds to a single
Einstein oscillator. The fitted frequency, 1080 cmK1Z
1580 K, is close to the Debye temperature (w1900 K).
This figure shows again the fact mentioned in connection

with Fig. 5: in order to obtain the asymptotic behavior of a
gap for T/N we must either have data for TOTD (not the

case in Fig. 6) or fit the available data to a reliable algebraic

expression, as has been done for Fig. 6. The thick straight
line depicts the corresponding asymptote which enables us

to estimate a gap renormalization of 370 meV, much larger
than the corresponding values for Ge and Si ðx70 meVÞ. In
order to corroborate this a priori unexpected result, data on
the corresponding isotope shift come in handy. There are

two stable carbon isotopes, 12C and 13C. In [47] we find a
derivative of the gap with respect to M equal to 14G
0.8 meV/amu which, using the MK1/2 rule, leads to the

renormalization K2!14!13ZK364 meV, in excellent
agreement with the value estimated above. A recent

semiempirical LCAO calculation results in a renormaliza-
tion of 600 meV [48], even larger than the experimental

values. The value of the exciton energy shown in Fig. 6,
5.79 eV, can be compared with ab initio calculations of the

Fig. 5. Temperature dependence of the indirect gap of silicon. The
points are experimental [36], the solid curve represents a single

Einstein oscillator fit to the experimental points. The dashed line

represents the asymptotic behavior at high temperature: its intercept

with the vertical axis allows us to estimate the bare gap and thus the
zero-point renormalization due to electron–phonon interaction.

Fig. 6. Energy of the indirect exciton of diamond versus

temperature. The points are experimental. The solid curve

represents an Einstein oscillator fit whereas the dashed line
represents the asymptotic behavior at high temperature as extracted

from the Einstein oscillator fit. The intercept of the dashed line with

the vertical axis determines the unrenormalized (bare) gap. See text.
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Electron-phonon interactions 
from first principles

F. Giustino, Rev. Mod. Phys. 89, 015003 (2017).
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Density Functional  
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Density Functional  
Perturbation Theory:

dn(r)/dRIdensity response        

All phonon properties!

Density Functional Theory:
density n(r)

Density response is localized 
in real space. 

F. Giustino, M. Cohen, and S. Louie,  
Phys. Rev. B 76 165108 (2007).  



Density Functional Theory: 
density n(r)

Density Functional  
Perturbation Theory:

dn(r)/dRIdensity response        

All phonon properties!

Density response is localized 
in real space. 

F. Giustino, M. Cohen, and S. Louie,  
Phys. Rev. B 76 165108 (2007).  

Using techniques 
developed for describing 

delocalized 
properties 
to describe a 

localized response 
is not efficient!

F. Giustino, M. Cohen, and S. Louie, 
Phys. Rev. B 76 165108 (2007).



Accelerating DFPT 
e.g.: F. Giustino, M. Cohen, and S. Louie, Phys. Rev. B 76 165108 (2007).  

EPW Software: Ponce, et al., Comp. Phys. Comm. 209, 116 (2016). 

Response computed in reciprocal-space  
on a finite q-grid.

Truncated Fourier-Transform to real-space.

Localization enables real-space interpolation  
(e.g.  Wannier: Vanderbilt, Marzari, Giustino, etc.) 

Truncated Fourier-Transform back to reciprocal-space.



Heine-Allen-Cardona Theory
P. B. Allen and M. Cardona, Phys. Rev. B 23, 1495 (1981).
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Theory of the temperature dependence of the direct gap of germanium
P. B.Allen* and M. Cardona

{Received 14 July 1980j

A complete pseudopotential calculation of the temperature dependence of the I', . conduction-band and the I'».
valence-band states is performed. The calculation uses the lattice dynamics of Weber's bond-charge model and a
local pseudopotential with a basis of 59 plane waves. Debye-Wailer (DWj terms and also self-energy terms are
included. While the DW terms alone are only slightly larger than experimental results, the addition of the self-
energy correction results in a total shift of the gap with increasing temperature which is nearly three times as large
as that observed. These results are compared with calculations and experiments for the second-order Raman
scattering of c-Ge. We conclude that the pseudopotential-rigid-ion calculation overestimates the electron-2-TA-
phonon coupling while it underestimates the coupling of the electrons with two TO phonons. The self-energy effects
are particularly large for optical phonons connecting the I ». with the L,. valence bands.

I. INTRODUCTION

Semiconductors exhibit large shifts of the fund-
amental absorption edge with temperature, ' either
to the red (germanium-zinc blende') or the blue
[PbS, PbSe, PbTe (Ref. 2)]. Part of these shifts
are due to thermal expansion and the concomitant
changes in the band structure with volume. This
effect, however, usually only accounts for a frac-
tion (-,' to —,') of the observed shift. The remaining
temperature effect is to be attributed to an explicit
electron-phonon interaction,

BE, BE,'ti ( BE &i (81 V
BT g 9T j~ E8lnVj~ ( BT p

perature dependence of the band structure by using
pseudopotential form factors w'eakened by a Debye-
Waller (DW) term. The feeling was expressed
that this theory and the Fan theory were in some
sense equivalent, a feeling which to the present
date has permeated a great deal of the literature
on the subject. In a widely divulged but unpub-
lished report, Brooks and Yu' showed that the D%
terms stem from the second-order electron-pho-
non interaction to all orders while the Fan terms
are the first-order interaction taken in second-
order perturbation theory. They concluded, how-
ever, that the Fan terms are much smaller than
the DW ones, and thus can be neglected, a con-
clusion which has more recently been realized to
be erroneous. ' "Nevertheless, reasonable agree-

where & is the volume thermal-expansion coef-
ficient. The first term in the right-hand side of
Eq. (I) represents the "explicit" effect of the elec-
tron-phonon interaction while the second term
contains the "implicit" term of the thermal ex-
pansion. The latter can be obtained either ex-
perimentally (from the pressure dependence of
E~ ) or theoretically (by calculating the band struc-
ture as a function of lattice constant). In either
case it does not pose any serious conceptual prob-
lems.
The theory of the explicit effect of the electron-

phonon interaction has attracted the attention of
several workers since 1951, when Fan' presented
a calculation of the electron self-energy due to
phonons [first-order electron-phonon interaction
0",p' in second-order perturbation theory, Fig.
l(a)] within a simple model (Debye phonons, para-
bolic bands). This model yields a decrease of the
lowest gap with increasing T, in agreement with
experiments for Ge-type materials but not for PbS.
In 1955, Antoncik4 suggested calculating the tem-
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FIG. 1. Self-energy graphs corresponding to Eq. (2).
Graph (a) is the 'Fan theory and corresponds to the se-
cond term of Eq. (2). Graph (b) is the lowest-order
Debye-Wailer correction and corresponds to the first
term of Eq. (2). Graph (c) shows some higher-order
Debye-Wailer terms.
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Fig. 6. (Color online) Electronic spectral function Ank(!, T ) for the valence band of B-doped diamond, calculated using a 106 random q-grid at different temperatures and
broadening parameters �.

60

40

20

Fig. 7. (Color online) Electron (top) and phonon (bottom) bandstructures and
density of states (DOS) of Si at the optimized lattice parameter.
Source: Experimental neutron-scattering data measured at 300 K are taken from
Ref. [130] (filled circles) and Ref. [131] (filled triangles).

part of the electronic self-energy) changes sign across the Fermi
level (negative renormalization for ! < !q⌫ and positive other-
wise). This is due to the fact that, in Eq. (3), when ! < !q the
sign of the final state "mk+q gives the overall sign of the self-energy,
whereas when! � !q then the denominator of Eq. (3) is positive.

10.2. Scattering rate of undoped Si

We choose to study the scattering rate of undoped silicon,
as this material has been studied previously by several groups
using parametrized tight-binding models [125], direct evaluations
of the electron–phonon matrix elements [15,126], ab-initio linear
interpolations [47] aswell asWannier interpolation using previous
versions of the EPW code [127–129]. We recover the same results,
including the sharp increase in scattering rate above the optical
phonon emission threshold starting from very coarse initial grids.

The Si norm-conserving pseudopotential used for this study
was generated from a non-relativistic calculation. The valence
electrons treated explicitly in the calculations are the 3s23p2 with

Fig. 8. (Color online) Carrier scattering rate in Si as a function of energy at 0 K (red
dots) and 300 K (green dots), obtained with a broadening of 10 meV and 30,000
random k-points, 150,000 random q-points. The electronic DOS is superimposed
with arbitrary units. The Fermi level is placed in the middle of the gap.

the Perdew and Zunger parametrization of the LDA [63]. Conver-
gence studies (with errors below 2 meV/atom on the total energy)
lead to using an 8 ⇥ 8 ⇥ 8 � -centered Monkhorst–Pack [132] k-
point sampling of the BZ, and a plane wave energy cutoff of 45 Ry.

The lattice parameter obtained after structural relaxation is cal-
culated to be 10.207 bohr, slightly below the experimental lat-
tice parameter of 10.262 bohr [133]. The electronic bandstructure
shown at the top of Fig. 7 was computed at the DFT level and gave
an indirect bandgap of 0.497 eV, underestimating as expected the
experimental value of 1.12 eV. The calculated phonon bandstruc-
ture shown at the bottom of Fig. 7 slightly underestimates the neu-
tron scattering data measured at 300 K [130,131].

The scattering rate is the inverse of the relaxation time ⌧nk, and
is directly connected to the imaginary part of the electron self-
energy from Eq. (8):

1
⌧nk(!, T )

= 2⌃ 00

nk(!, T ). (61)

B-doped diamond: Ponce, et al.,  
Comp. Phys. Comm. 209, 116 (2016).

Electronic 
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Traditional Perturbation Theory
P. B. Allen and V. Heine, J. Phys. C 9, 2305 (1976).

F. Giustino, M. L. Cohen, and S. G. Louie,  
Phys. Rev. B 76, 165108 (2007).
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Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
P

⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79

Frontiers 3

Carbogno et al. Nuclear Dynamics in Solid Materials

R1,0 R2,0 R1,1 R2,1 R1,2 R2,2 R1,3R1,-1 R2,-1

A1

ΔR1,0 ΔR2,0 ΔR1,1 ΔR2,1 ΔR1,2 ΔR2,2 ΔR1,3ΔR1,-1 ΔR2,-1

Instantaneous  snapshot  
of the thermodynamic fluctuations 

Perfectly periodic solid  
in static equilibrium 

Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
P

⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79

Frontiers 3

Carbogno et al. Nuclear Dynamics in Solid Materials

R1,0 R2,0 R1,1 R2,1 R1,2 R2,2 R1,3R1,-1 R2,-1

A1

ΔR1,0 ΔR2,0 ΔR1,1 ΔR2,1 ΔR1,2 ΔR2,2 ΔR1,3ΔR1,-1 ΔR2,-1

Instantaneous  snapshot  
of the thermodynamic fluctuations 

Perfectly periodic solid  
in static equilibrium 

Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
P

⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79

Frontiers 3

Carbogno et al. Nuclear Dynamics in Solid Materials

R1,0 R2,0 R1,1 R2,1 R1,2 R2,2 R1,3R1,-1 R2,-1

A1

ΔR1,0 ΔR2,0 ΔR1,1 ΔR2,1 ΔR1,2 ΔR2,2 ΔR1,3ΔR1,-1 ΔR2,-1

Instantaneous  snapshot  
of the thermodynamic fluctuations 

Perfectly periodic solid  
in static equilibrium 

Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
P

⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79

Frontiers 3



Unfolding Band structures II / Silicon 4⇥4⇥4

Unfolding routine implemented in FHI-aims (parallelized over k-points)

Spectral function in MD: Alk(", T ) =
1
Ns

NsP
s

P
LK

|fs

LK,lk|2�("� "s
LK),

T = 100 K, Ns = 10, Renormalization of direct gap: 100 meV

5 / 23

Ei
ge

nv
al

ue
s

" X

Unfolding Band structures II / Silicon 4⇥4⇥4

Unfolding routine implemented in FHI-aims (parallelized over k-points)

Spectral function in MD: Alk(", T ) =
1
Ns

NsP
s

P
LK

|fs

LK,lk|2�("� "s
LK),

T = 100 K, Ns = 10, Renormalization of direct gap: 100 meV

5 / 23

UnfoldingBandstructuresII/Silicon4⇥4⇥4

UnfoldingroutineimplementedinFHI-aims(parallelizedoverk-points)

SpectralfunctioninMD:Alk(",T)=
1
Ns

Ns P
s

P
LK

|fs

LK,lk|2�("�"s
LK),

T=100K,Ns=10,Renormalizationofdirectgap:100meV

5/23 "

Ei
ge

nv
al

ue
s

X’

Carbogno et al. Nuclear Dynamics in Solid Materials

R1,0 R2,0 R1,1 R2,1 R1,2 R2,2 R1,3R1,-1 R2,-1

A1

ΔR1,0 ΔR2,0 ΔR1,1 ΔR2,1 ΔR1,2 ΔR2,2 ΔR1,3ΔR1,-1 ΔR2,-1

Instantaneous  snapshot  
of the thermodynamic fluctuations 

Perfectly periodic solid  
in static equilibrium 

Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
P

⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79

Frontiers 3

Carbogno et al. Nuclear Dynamics in Solid Materials

R1,0 R2,0 R1,1 R2,1 R1,2 R2,2 R1,3R1,-1 R2,-1

A1

ΔR1,0 ΔR2,0 ΔR1,1 ΔR2,1 ΔR1,2 ΔR2,2 ΔR1,3ΔR1,-1 ΔR2,-1

Instantaneous  snapshot  
of the thermodynamic fluctuations 

Perfectly periodic solid  
in static equilibrium 

Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
P

⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79

Frontiers 3

Carbogno et al. Nuclear Dynamics in Solid Materials

R1,0 R2,0 R1,1 R2,1 R1,2 R2,2 R1,3R1,-1 R2,-1

A1

ΔR1,0 ΔR2,0 ΔR1,1 ΔR2,1 ΔR1,2 ΔR2,2 ΔR1,3ΔR1,-1 ΔR2,-1

Instantaneous  snapshot  
of the thermodynamic fluctuations 

Perfectly periodic solid  
in static equilibrium 

Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
P

⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79

Frontiers 3

Carbogno et al. Nuclear Dynamics in Solid Materials

R1,0 R2,0 R1,1 R2,1 R1,2 R2,2 R1,3R1,-1 R2,-1

A1

ΔR1,0 ΔR2,0 ΔR1,1 ΔR2,1 ΔR1,2 ΔR2,2 ΔR1,3ΔR1,-1 ΔR2,-1

Instantaneous  snapshot  
of the thermodynamic fluctuations 

Perfectly periodic solid  
in static equilibrium 

Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
P

⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79

Frontiers 3



Unfolding Band structures II / Silicon 4⇥4⇥4

Unfolding routine implemented in FHI-aims (parallelized over k-points)

Spectral function in MD: Alk(", T ) =
1
Ns

NsP
s

P
LK

|fs

LK,lk|2�("� "s
LK),

T = 100 K, Ns = 10, Renormalization of direct gap: 100 meV

5 / 23

Ei
ge

nv
al

ue
s

" X

Unfolding Band structures II / Silicon 4⇥4⇥4

Unfolding routine implemented in FHI-aims (parallelized over k-points)

Spectral function in MD: Alk(", T ) =
1
Ns

NsP
s

P
LK

|fs

LK,lk|2�("� "s
LK),

T = 100 K, Ns = 10, Renormalization of direct gap: 100 meV

5 / 23

UnfoldingBandstructuresII/Silicon4⇥4⇥4

UnfoldingroutineimplementedinFHI-aims(parallelizedoverk-points)

SpectralfunctioninMD:Alk(",T)=
1
Ns

Ns P
s

P
LK

|fs

LK,lk|2�("�"s
LK),

T=100K,Ns=10,Renormalizationofdirectgap:100meV

5/23 "

Ei
ge

nv
al

ue
s

X’

Unfolding Band structures II / Silicon 4⇥4⇥4

Unfolding routine implemented in FHI-aims (parallelized over k-points)

Spectral function in MD: Alk(", T ) =
1
Ns

NsP
s

P
LK

|fs

LK,lk|2�("� "s
LK),

T = 100 K, Ns = 10, Renormalization of direct gap: 100 meV

5 / 23

UnfoldingBandstructuresII/Silicon4⇥4⇥4

UnfoldingroutineimplementedinFHI-aims(parallelizedoverk-points)

SpectralfunctioninMD:Alk(",T)=
1
Ns

Ns P
s

P
LK

|fs

LK,lk|2�("�"s
LK),

T=100K,Ns=10,Renormalizationofdirectgap:100meV

5/23 "

Ei
ge

nv
al

ue
s

X’’

Carbogno et al. Nuclear Dynamics in Solid Materials

R1,0 R2,0 R1,1 R2,1 R1,2 R2,2 R1,3R1,-1 R2,-1

A1

ΔR1,0 ΔR2,0 ΔR1,1 ΔR2,1 ΔR1,2 ΔR2,2 ΔR1,3ΔR1,-1 ΔR2,-1

Instantaneous  snapshot  
of the thermodynamic fluctuations 

Perfectly periodic solid  
in static equilibrium 

Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
P

⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
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first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72
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Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.
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Figure 1. Sketch comparing the atomic arrangement of a periodic, two-atomic linear chain in
static equilibrium (upper panel) to the one observed in an instantaneous snapshot at thermodynamic
equilibrium (lower panel). Note that a periodic notation and indexing of the atoms via RIL = RI +LL (see
text) is also used in the latter case, despite the fact that the actual displacements�RIL break the translational
symmetry.

allows to separate the (typically fast) electronic and (typically slow) nuclear degrees of freedom using the58

Ansatz ({r}, {A}, {R}) =
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⌫ ⇤⌫ ({A}, {R})⌅⌫({r}), so to obtain two separate, coupled Schrödinger59

Equations for the Hamiltonians He
A,R and HNuc({RI})60

He
A,R⌅⌫({r}) = (T e + V e�e + V e�Nuc)⌅⌫({r}) = Ee⌅⌫({r}) (4)

HNuc({RI})⇤µ = (TNuc + V Nuc�Nuc + Ee
µ)⇤µ = E⇤µ . (5)

Here, the so called non-adiabatic terms that explicitly couple the electronic ⌅⌫({r}) and nuclear61

wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79
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Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76
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wave functions ⇤µ ({A}, {R}) have been neglected. Furthermore, we will assume that the electrons62

instantaneously relax to their ground state ⌅0, so that the motion of the nuclei is solely dictated by63

the Born-Oppenheimer PES U({A}, {R}) = V Nuc�Nuc + Ee
0. Clearly, this is an approximation that64

is particularly severe in materials in which electronic and nuclear excitations can happen on the same65

energetic scale, e.g., metals. The role of such non-adiabatic effects will be discussed throughout the text66

whenever necessary. Since the details of solving the electronic Schrödinger Eq. (4) in a sufficiently accurate67

fashion via computational electronic-structure theory are discussed in the rest of this issue, we refer to the68

respective chapters [?,?]. For now, we just remark that determining Ee
0 and the respective forces on the69

nuclei requires one electronic-structure theory calculation for each nuclear configuration {A}, {R}. This70

can become rapidly computationally prohibitive; for this exact reasons, analytic expression of U fitted to71

first-principles calculations, so called semi-empirical PESs, are available for some materials. Again, the72

accuracy of such semi-empirical PESs will be discussed throughout the text.73

In a nutshell, the dynamics of the nuclei is determined by the potential-energy surface U({A}, {R}).74

On the coarsest level, the methodologies available to describe the nuclear motion fall in two categories:75

Perturbative methods, in which the PES is approximated so to allow for a rapid evaluation of the nuclear76

motion, and non-perturbative methods, in which the motion on the correct PES U({A}, {R}) is investigated.77

In first-principles calculations, exploring U({A}, {R}) requires to perform one electronic-structure78

calculation for each investigated nuclear configuration ({A}, {R}), so that non-perturbative methods79
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This is the  
electronic self-energy renormalised  

by vibronic coupling for one configuration!

h"l(k0)iMD
T =

1

t0

t0Z

0

"l(k
0, t) dt .
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Thermodynamic Average gives 
Expectation value:

Instantaneous  snapshot of the 
thermodynamic fluctuations
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Tetragonal 
(I4/mcm)

Dynamically Stabilized 
Cubic (Pm3m)

105 K

R.   Lötzsch,  et al.,  Appl. Phys. Lett. 96, 071901  (2010).

P. K. Gogoi and D. Schmidt, Phys. Rev. B 93, 075204 (2016).

Cubic SrTiO3: 
A Real Challenge
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Harmonic Approximation  
breaks down completely!
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All orders of 
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SrTiO3 is tricky in DFT: 
• Significative Van der Waals interactions:  

Tkatchenko-Scheffler (TS) method is used.  
A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).


• PBE-TS used for ab initio MD and electronic-structure renormalization 

• Strong lattice expansion: Non-perturbative Ab initio MD calculations




In our approach, we can systematically lift these approximations
(a) Perturbative description of electronic structure
(b) Perturbative description of vibrational motion

Overcoming the  
Perturbational Limit 



In our approach, we can systematically lift these approximations
(a) Perturbative description of electronic structure
(b) Perturbative description of vibrational motion

h"ptl (k, t)ihaT
<latexit sha1_base64="rCy+MWLUz39K77WdbrjFUGoSIJE="></latexit>

Standard 
Perturbation 

Theory 
 Approach 

from 
Literature

- Perturbative Electrons

- Harmonic Nuclei

F. Giustino, 

Rev. Mod. Phys. 89, 015003 (2017).

Overcoming the  
Perturbational Limit 



In our approach, we can systematically lift these approximations
(a) Perturbative description of electronic structure
(b) Perturbative description of vibrational motion

h"ptl (k, t)ihaT
<latexit sha1_base64="rCy+MWLUz39K77WdbrjFUGoSIJE="></latexit>

h"l(k, t)ihaT
<latexit sha1_base64="Ve/gO3x3M0w5+srH6c+ykyhgVbc="></latexit>

Standard 
Perturbation 

Theory 
 Approach 

from 
Literature

- Perturbative Electrons

- Harmonic Nuclei

- Full Electronic Structure

- Harmonic Nuclei

F. Giustino, 

Rev. Mod. Phys. 89, 015003 (2017).

ꔅ
Comparison of 

Quantum  
vs.  

Classical Nuclei 
in an 

analytic fashion

Overcoming the  
Perturbational Limit 



In our approach, we can systematically lift these approximations
(a) Perturbative description of electronic structure
(b) Perturbative description of vibrational motion

h"ptl (k, t)ihaT
<latexit sha1_base64="rCy+MWLUz39K77WdbrjFUGoSIJE="></latexit>

h"l(k, t)ihaT
<latexit sha1_base64="Ve/gO3x3M0w5+srH6c+ykyhgVbc="></latexit>

h"l(k, t)iMD
T

<latexit sha1_base64="3Uxusrq7TcaWFqxkcfwkhMfvT3Y="></latexit>

Standard 
Perturbation 

Theory 
 Approach 

from 
Literature

- Perturbative Electrons
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- Full Electronic Structure
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- Full Electronic Structure

- Anharmonic Nuclei

F. Giustino, 

Rev. Mod. Phys. 89, 015003 (2017).

ꔅ ꔅ
Classical Nuclei
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Exact solution  

at elevated temperatures

Comparison of 
Quantum  

vs.  
Classical Nuclei 

in an 
analytic fashion
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Static Limit

Massive Band-Gap 
Renormalization  
with Temperature!

HSE06: 3.45 eV
PBE:   2.30 eV

Cubic SrTiO3 – A Real 
Challenge

Experiment: 
D. J. Kok, et al.,  
Phys. Stat. Sol. A 212,  
1880 (2015). 
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Static Limit

Allen-Heine Theory
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Perturbation theory 
captures the  
low-temperature limit,  
but fails for T>500K.

Cubic SrTiO3 – A Real 
Challenge

Experiment: 
D. J. Kok, et al.,  
Phys. Stat. Sol. A 212,  
1880 (2015). 



0 250 500 750 1000 1250 1500 1750
Temperature (K)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

B
an

d 
G

ap
 R

en
or

m
al

iz
at

io
n 

(e
V

)

Te
tr
ag
on

al

h"l(k, t)iha�qm
T<latexit sha1_base64="8Nv9JG0GfcVhJ6/2IeHjrNmUqpc="></latexit>

Quantum-
Mechanical 
Harmonic

Static Limit

Non-perturbative 
Harmonic Theory 
not better either!

Allen-Heine Theory
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Improvement!
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Experiment: 
D. J. Kok, et al.,  
Phys. Stat. Sol. A 212,  
1880 (2015). 
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Spectral Functions
Ab initio MD @ 1200 K 

Change in Band-Gap mainly stems 
from a renormalization of VBM@R.
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Spectral Functions
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Much more properties and physics affected  
by vibronic/anharmonic couplings: 

   absorption spectra, effective masses, line widths viz. 
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Classical Harmonic @ 1200 K 

Spectral Functions
Ab initio MD @ 1200 K 

Much more properties and physics affected  
by vibronic/anharmonic couplings: 

   absorption spectra, effective masses, line widths viz. 
lifetimes,…

Electron Effective Masses
M. Zacharias, M. Scheffler, and C. Carbogno, 

Phys. Rev. B 102, 04526 (2020).

Static DFT-LDA 0.63 m0

Static DFT-
HSE06

0.57 m0

This work 0.9±0.2 m0

Experiment > 1-1.3 m0

S. J. Allen et al., Phys. Rev. B 88, 045114 (2013). 
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ELECTRONS IN A PERIODIC POTENTIAL

The Bloch Theorem: 
F. Bloch, Z. Physik 52, 555 (1929). 
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The Bloch Theorem: 
F. Bloch, Z. Physik 52, 555 (1929). 

 nk(r) = unk(r) · eikr

ELECTRONS IN A PERIODIC POTENTIAL

Fermi-Dirac Statistics: 
E. Fermi, Z. Physik 36, 902 (1926). 

P. Dirac, Proc. R. Soc. A 112, 661 (1926). 
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In n-type semiconductors, electrons 
are the majority charge carriers.

Je = �e ve(ke) Jh = 0

"
�

" f

0

INSTANTANEOUS NON-EQUILIBRIUM



n-type SC p-type SC metal

f(")

T ≫ 0K

t = t0 t = t0 t = t0

Jnk
q = �e vn(k)

In p-type semiconductors, holes 
are the majority charge carriers.

Je = 0 Jh = +e vh(kh)

"
�

" f

0

INSTANTANEOUS NON-EQUILIBRIUM



n-type SC p-type SC metal
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T ≫ 0K

t = t0 t = t0 t = t0

Jnk
q = �e vn(k)

In typical metals with ve > vh,  
electrons are the majority charge carriers.
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N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).
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SINGLE RELAXATION TIME APPROXIMATION
N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).
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Ab initio electronic transport database  

conductivity (divided by τ) for different temperatures as a function of the Fermi level (energy steps
contained as values of the mu_steps key); effective masses for different doping levels (n- and p-type) at
300 K; the values of the chemical potential corresponding to each doping level (n- and p-type); the Fermi
level values.

In both datasets, for the Seebeck coefficient, the electronic conductivity (divided by τ), and the
electronic thermal conductivity (divided by τ) both the full tensor and its eigenvalues, sorted in ascending
order, are stored. For the effective mass, only the sorted (in ascending order) eigenvalues of the full tensor
are stored. Regarding the Hall carrier concentration, only the averaged trace of the full Hall tensor is
stored. We provide eigenvalues since they are invariant of the axis choice. They are therefore extremely
useful to query. For instance, a search for high Seebeck materials would involve a query on the
Seebeck eigenvalues. To facilitate queries, the eigenvalues are sorted by ascending order (the first
eigenvalue being the smallest one). The anisotropy of a property can directly be assessed by the difference
between the last and first eigenvalue. We stress that the provided eigenvalues are sorted in ascending
order and do not contain any information about the corresponding principal directions. In order to
obtain the correspondence between crystallographic directions and eigenvalues, we suggest to work on
the full tensor (and the crystal structure information) and apply an algorithm finding eigenvalues and

Figure 2. Seebeck versus electron conductivity (divided by τ). The color represents the power factor (S2σ) and
the pointsize is used for band gap. The reported values are averages over the three direction for T= 600 K and
n- and p-type doping level (Dop) of 1020 cm− 3. Only materials with band gap higher than 0.1 eV in GGA are
considered.

Figure 3. Electron contribution of the thermal conductivity versus electron conductivity: (both divided
by τ). The values are averages over three direction for T= 600 K. Only materials with band gap equal to zero eV
in GGA are considered. The blue line represents the Wiedemann-Franz law that holds for metals.

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170085 | DOI: 10.1038/sdata.2017.85 8

F. Ricci, et al., Scientific Data 4,170085 (2017).
BoltzTrap Code: G. K. H. Madsen and D. J. Singh, Comp. Phys. Comm. 175, 67 (2006).
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Conductivity = Charge Carriers * Mobility
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Theory of the temperature dependence of the direct gap of germanium
P. B.Allen* and M. Cardona

{Received 14 July 1980j

A complete pseudopotential calculation of the temperature dependence of the I', . conduction-band and the I'».
valence-band states is performed. The calculation uses the lattice dynamics of Weber's bond-charge model and a
local pseudopotential with a basis of 59 plane waves. Debye-Wailer (DWj terms and also self-energy terms are
included. While the DW terms alone are only slightly larger than experimental results, the addition of the self-
energy correction results in a total shift of the gap with increasing temperature which is nearly three times as large
as that observed. These results are compared with calculations and experiments for the second-order Raman
scattering of c-Ge. We conclude that the pseudopotential-rigid-ion calculation overestimates the electron-2-TA-
phonon coupling while it underestimates the coupling of the electrons with two TO phonons. The self-energy effects
are particularly large for optical phonons connecting the I ». with the L,. valence bands.

I. INTRODUCTION

Semiconductors exhibit large shifts of the fund-
amental absorption edge with temperature, ' either
to the red (germanium-zinc blende') or the blue
[PbS, PbSe, PbTe (Ref. 2)]. Part of these shifts
are due to thermal expansion and the concomitant
changes in the band structure with volume. This
effect, however, usually only accounts for a frac-
tion (-,' to —,') of the observed shift. The remaining
temperature effect is to be attributed to an explicit
electron-phonon interaction,

BE, BE,'ti ( BE &i (81 V
BT g 9T j~ E8lnVj~ ( BT p

perature dependence of the band structure by using
pseudopotential form factors w'eakened by a Debye-
Waller (DW) term. The feeling was expressed
that this theory and the Fan theory were in some
sense equivalent, a feeling which to the present
date has permeated a great deal of the literature
on the subject. In a widely divulged but unpub-
lished report, Brooks and Yu' showed that the D%
terms stem from the second-order electron-pho-
non interaction to all orders while the Fan terms
are the first-order interaction taken in second-
order perturbation theory. They concluded, how-
ever, that the Fan terms are much smaller than
the DW ones, and thus can be neglected, a con-
clusion which has more recently been realized to
be erroneous. ' "Nevertheless, reasonable agree-

where & is the volume thermal-expansion coef-
ficient. The first term in the right-hand side of
Eq. (I) represents the "explicit" effect of the elec-
tron-phonon interaction while the second term
contains the "implicit" term of the thermal ex-
pansion. The latter can be obtained either ex-
perimentally (from the pressure dependence of
E~ ) or theoretically (by calculating the band struc-
ture as a function of lattice constant). In either
case it does not pose any serious conceptual prob-
lems.
The theory of the explicit effect of the electron-

phonon interaction has attracted the attention of
several workers since 1951, when Fan' presented
a calculation of the electron self-energy due to
phonons [first-order electron-phonon interaction
0",p' in second-order perturbation theory, Fig.
l(a)] within a simple model (Debye phonons, para-
bolic bands). This model yields a decrease of the
lowest gap with increasing T, in agreement with
experiments for Ge-type materials but not for PbS.
In 1955, Antoncik4 suggested calculating the tem-

kn k+Qn
I'll
k, n

Qj

(b)

k,n

k,n %,n' k,n" k, n

FIG. 1. Self-energy graphs corresponding to Eq. (2).
Graph (a) is the 'Fan theory and corresponds to the se-
cond term of Eq. (2). Graph (b) is the lowest-order
Debye-Wailer correction and corresponds to the first
term of Eq. (2). Graph (c) shows some higher-order
Debye-Wailer terms.

1495

Fan 
term

Debye 
Waller 
term

Many-Body  
Perturbation Theory

Electron-Phonon
Couplings gmnv(q,k)
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Fig. 6. (Color online) Electronic spectral function Ank(!, T ) for the valence band of B-doped diamond, calculated using a 106 random q-grid at different temperatures and
broadening parameters �.
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Fig. 7. (Color online) Electron (top) and phonon (bottom) bandstructures and
density of states (DOS) of Si at the optimized lattice parameter.
Source: Experimental neutron-scattering data measured at 300 K are taken from
Ref. [130] (filled circles) and Ref. [131] (filled triangles).

part of the electronic self-energy) changes sign across the Fermi
level (negative renormalization for ! < !q⌫ and positive other-
wise). This is due to the fact that, in Eq. (3), when ! < !q the
sign of the final state "mk+q gives the overall sign of the self-energy,
whereas when! � !q then the denominator of Eq. (3) is positive.

10.2. Scattering rate of undoped Si

We choose to study the scattering rate of undoped silicon,
as this material has been studied previously by several groups
using parametrized tight-binding models [125], direct evaluations
of the electron–phonon matrix elements [15,126], ab-initio linear
interpolations [47] aswell asWannier interpolation using previous
versions of the EPW code [127–129]. We recover the same results,
including the sharp increase in scattering rate above the optical
phonon emission threshold starting from very coarse initial grids.

The Si norm-conserving pseudopotential used for this study
was generated from a non-relativistic calculation. The valence
electrons treated explicitly in the calculations are the 3s23p2 with

Fig. 8. (Color online) Carrier scattering rate in Si as a function of energy at 0 K (red
dots) and 300 K (green dots), obtained with a broadening of 10 meV and 30,000
random k-points, 150,000 random q-points. The electronic DOS is superimposed
with arbitrary units. The Fermi level is placed in the middle of the gap.

the Perdew and Zunger parametrization of the LDA [63]. Conver-
gence studies (with errors below 2 meV/atom on the total energy)
lead to using an 8 ⇥ 8 ⇥ 8 � -centered Monkhorst–Pack [132] k-
point sampling of the BZ, and a plane wave energy cutoff of 45 Ry.

The lattice parameter obtained after structural relaxation is cal-
culated to be 10.207 bohr, slightly below the experimental lat-
tice parameter of 10.262 bohr [133]. The electronic bandstructure
shown at the top of Fig. 7 was computed at the DFT level and gave
an indirect bandgap of 0.497 eV, underestimating as expected the
experimental value of 1.12 eV. The calculated phonon bandstruc-
ture shown at the bottom of Fig. 7 slightly underestimates the neu-
tron scattering data measured at 300 K [130,131].

The scattering rate is the inverse of the relaxation time ⌧nk, and
is directly connected to the imaginary part of the electron self-
energy from Eq. (8):

1
⌧nk(!, T )

= 2⌃ 00

nk(!, T ). (61)

B-doped diamond: Ponce, et al.,  
Comp. Phys. Comm. 209, 116 (2016).
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effect is negligible (see Supplemental Material Fig. S6 [27]).
We also determined the electron-phonon renormalization of
the effective masses using data from Ref. [43]. This effect
increases the masses by ∼3%, and results in a decrease of
the mobilities by ∼5%.

After considering all the effects discussed so far, and after
accounting for the corrections to the SERTA results arising
from the solution of the complete IBTE, our most accurate the-
oretical mobilities at 300 K are µe = 1366 cm2/V s and µh =
658 cm2/V s. These values are to be compared to the measured
drift mobilities µ

expt
e = 1350–1450 cm2/V s [36,37,39,44] and

µ
expt
h = 445–510 cm2/V s [36,37,44,45] (Fig. 1). From the

comparison with experiment we see that by pushing the theory
to its limits we can obtain electron mobilities in very good
agreement with experiment. On the contrary, the hole mobility
is still approximately 30% above the measured range. This
discrepancy can be traced back to the underestimation of the
[100] heavy-hole effective masses within the GW approxima-
tion. In fact, by repeating the calculation using the experimental
hole effective mass instead of the GW mass, we obtain a hole
mobility µ′

h = 502 cm2/V s, this time in very good agreement
with experiment as shown in Fig. 1. This result leads us to
conclude that the effective mass plays an absolutely critical
role in mobility calculations. Our finding can be understood
by considering that the mobility varies with the effective mass
as µ = (m∗)−p with p being a coefficient between 1 and 2.5
[46–48]; as a result a 20% error in the effective mass leads to
an error in the mobility of up to 60%. This finding highlights
the critical role of accurate calculations of quasiparticle band
structures, and raises the question on whether the standard GW
method and pseudopotential calculations (see Supplemental
Material Table S2) are sufficient for delivering predictive
mobilities.

Using the best possible computational setup we can now
compare our calculations with experiment over a range of
temperatures and doping levels. Figure 3(a) shows the in-
trinsic electron and hole mobilities of silicon between 100
and 500 K. In the case of the hole mobilities we show
both our best ab initio results (solid line), as well as those
recalculated using the experimental effective masses (dashed
line). Overall, the agreement between our calculations and
experiment is very good throughout the entire temperature
range. Figure 3(b) shows a comparison between calculated
and measured mobilities at 300 K, as a function of carrier
concentration between 1015 and 1019 cm−3. In this case,
in addition to the ab initio electron-phonon scattering, we
used the semiempirical model of Brooks and Herring with
the Long-Norton correction [38,39] to account for impurity
scattering (see Supplemental Material for details [27]). Also
in this case we find very good agreement with experiment,
although the contribution of impurity scattering is evaluated
semiempirically.

In conclusion, we pushed the accuracy of transport cal-
culations within the BTE formalism to its limits, and we
demonstrated that this approach can deliver predictive ac-
curacy for a prototypical semiconductor. Our findings raise
two important questions for future work on transport in
semiconductors: (i) the present formalism yields results which
fall within the experimental uncertainty. In order to enable
further progress in this area it will be important to produce
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FIG. 3. (a) Comparison between calculated and measured in-
trinsic (low carrier concentration !1015 cm−3) electron and hole
mobilities of silicon, as a function of temperature. The calculations
are performed using our best computational setup. The blue lines are
for holes and the orange line is for electrons. In the case of holes
we show both our best ab initio calculations (solid blue), and the
results obtained by setting the hole effective mass to the experimental
value (dashed blue). The shading is a guide to the eye. Experiments
are from [34] (%), [35] (♦), [36] (!), [37] (◦), and [19] (").
(b) Comparison between calculated and measured electron and hole
mobilities of silicon at 300 K, as a function of carrier concentration,
using the same color code as in (a). Experimental data are from [37]
(◦). The impurity scattering is included via the model of Brooks and
Herring with the Long-Norton correction [38,39] as described in the
Supplemental Material [27].

high-quality experimental data from single-crystal samples.
(ii) An unexpected challenge that we faced is to perform
accurate ab initio calculations of effective masses. Going
forward it will be important to establish whether the GW
method and pseudopotential calculations can provide effective
masses with the accuracy required for predictive mobility
calculations. Meanwhile, the present work opens the way to
predictive calculations of mobilities and lays the groundwork
for the ab initio design of semiconductor devices.

Note added. Recently, a related calculation for Si was
reported, where the authors found a significant increase in Si
hole mobility with spin-orbit coupling (SOC) and no effect
from SOC on the electron mobility in line with our results [49].
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SINGLE RELAXATION TIME APPROXIMATION
N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).

The conductivity is intrinsically related to the effective mass:
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OPTICAL CONDUCTIVITY
N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).
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Using perturbation theory, we can thus compute  
the AC (optical) conductivity  

(in the independent particle approximation).
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Kubo’s Linear Response:

GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
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For ω ≠ 0, the electrical conductivity can be computed  
from the thermodynamic average <>T :

GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).

(a) Thermodynamic average of the band structure is sampled
⇒ no rigid band approximation

(b) Full adiabatic electron-phonon coupling is accounted for if 
the thermodynamic average is perfomed via ab initio MD

⇒ no perturbative approximation
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Compare: Optical conductivity in SRT approximation

For ω ≠ 0, the electrical conductivity can be computed  
from the thermodynamic average <>T :
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GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
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FIG. 1. (Color online) Electrical conductivity in dense hydrogen
for different temperatures from the region of the liquid-liquid phase
transition up to the dense plasma. At low densities the values increase
with temperature and decrease with temperature at high densities.

In general, the conductivity rises in the whole range studied
here with increasing density. On the one hand, this is the
result of pressure ionization which increases the amount of
conducting electrons, and on the other hand, even in the case
of a fully ionized system, a rising density of electrons results
in a further increase of the conductivity.

At T = 1000 K the liquid-liquid phase transition which
was previously reported for dense hydrogen22,23 can be
identified by the steep increase of the conductivity over several
orders of magnitude in a small density interval, (0.7 − 0.9)
g/cm3. At temperatures higher than 1500 K the transition
is continuous and the increase spreads to a larger range
in density. At densities below this transition the electrical
conductivity increases with temperature which is caused by
thermal ionization of neutral particles. The additional free
charges contribute to the conductivity.

At densities above this transition the dependence on
temperature is inverted: The electrical conductivity decreases
with temperature, which is typical for metals. Increasing
temperature broadens the Fermi function and therefore allows
additional electron scattering processes which reduce their
mobility. As a result, the conductivity is lower with increasing
temperature.

This behavior is also illustrated in Fig. 2, which shows
the electrical conductivity along isochores for different tem-
peratures. The conductivity decreases for temperatures above
2000 K along the isochores for densities higher than 0.9 g/cm3,
which are characteristic of the metallic phase. This indicates
that most of the system is ionized and thus acts metal-like.
Looking at lower densities the conductivity rises along the
whole temperature range, which is due to thermal ionization.
The isochores clearly show the general behavior of a rising
conductivity with increasing density.

Experiments in copper plasmas69 have indicated that the
electrical conductivity becomes a function of only the coupling
parameter ! for values of ! ! 10. The plasma parameter ! is
defined by

! = e2

4πε0kBT

(
4πne

3

) 1
3

, (20)

FIG. 2. (Color online) Electrical conductivity for different densi-
ties versus temperature.

where ne is the number density of free electrons. Although
such a behavior could not be confirmed later,70 a simple
functional form of the electrical conductivity at high values
of ! is still under discussion. To investigate whether such a
simple scaling is valid in dense liquid hydrogen, the results
for the electrical conductivity shown in Figs. 1 and 2 are
plotted against ! in Fig. 3. Only for temperatures higher than
10 000 K is the system strongly ionized. At lower temperatures
the occurrence of partial ionization prevents a proper calcula-
tion of ! within FT-DFT-MD, because the method does not
distinguish between bound and free electrons. Therefore, we
do not plot results for lower temperatures in Fig. 3.

The isotherms appear to be almost parallel in this loga-
rithmic plot and are clearly separated. Even at the highest
available values for ! " 60 the isotherms do not tend to
merge. We conclude that it is not possible to derive a simple
temperature-independent relation for the conductivity that
depends solely on the parameter ! as it was proposed earlier
for other metallic liquids.

FIG. 3. (Color online) Electrical conductivity as function of the
coupling parameter ! for different temperatures. The plotted data
cover a density range of (0.05–20) g/cm3.
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FIG. 4. (Color online) Thermal conductivity versus density for
different temperatures. The values increase with temperature.

B. Thermal conductivity

The isotherms of the thermal conductivity are plotted
in Fig. 4. They show a similar behavior as the electrical
conductivity and indicate a sharp nonmetal-to-metal transition
at a temperature below 1500 K. At this transition the thermal
conductivity increases over several orders of magnitude in a
narrow density range at about 0.9 g/cm3. The increase in the
thermal conductivity is due to the growing number of delocal-
ized electrons which are produced along the phase transition.
Above the critical temperature this transition becomes broader
and is caused by a combination of pressure and temperature
ionization.

In contrast to the behavior of the electrical conductivity,
the thermal conductivity does not decrease with temperature
in the metallic phase. The isotherms increase systematically
with temperature for all densities.

This is also shown along the isochores of the thermal
conductivity that are plotted in Fig. 5. These curves depict
likewise that the thermal conductivity rises invariably with
increasing density and temperature.

FIG. 5. (Color online) Thermal conductivity versus temperature
for different densities.

C. Thermopower

The thermopower α characterizes the generation of an
electric field as a response to a temperature gradient. For
most systems this electric field has a direction opposite to the
temperature gradient, which results in a negative thermopower.
The thermopower is most sensitive to changes in the electronic
structure since it can be expressed as the derivative of the
logarithm of the electronic conductivity with respect to the
energy at the Fermi surface.71 Such a relation, which is also
known as Mott formula, follows from the Kubo-Greenwood
equation (19) in the degenerate domain under strong scattering
conditions.

Interestingly, large positive values for the thermopower
were measured in fluid mercury72,73 near the liquid-vapor criti-
cal point, which is located at Tc = 1751 K and "c = 5.8 g/cm3.
In this region, isotherms of the electrical conductivity near Tc

show a strong increase with the density, which is steepest just at
the critical density "c. This behavior was assumed to be related
to fluctuations in the electron density, which are pronounced
near the critical point due to critical fluctuations. In particular,
a zero of the thermopower was observed exactly at the critical
density. The interesting question arises as to whether a zero of
the thermopower is a precursor of a first-order phase transition
in dense liquids which undergo a nonmetal-to-metal transition.
Wide regions with a positive thermopower have been predicted
for dense hydrogen by a simple chemical model34 but were not
confirmed in an advanced chemical approach16 by ab initio
simulations or by experiments yet.

In Fig. 6 isotherms of the thermopower α are plotted as
function of the density. The symbols represent the results
from the simulations and the error bars show the statistical
uncertainties. As guide to the eye, polynomial functions were
fitted to the numerical results. The thermopower is mostly
negative and reaches a value of about zero at high densities. At
lower densities the thermopower decreases. The low density
limit of α = −60.60 µV/K is known from the Spitzer theory
(see, e.g., Ref. 16). With higher temperatures the negative
values become systematically larger. We expect that these
values become smaller again at low densities to reach the
Spitzer limit. The thermopower shows positive mean values
below 20 000 K and between 0.2 g/cm3 and 0.5 g/cm3. These

FIG. 6. (Color online) Thermopower versus density for different
temperatures.
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FIG. 1. (Color online) Electrical conductivity in dense hydrogen
for different temperatures from the region of the liquid-liquid phase
transition up to the dense plasma. At low densities the values increase
with temperature and decrease with temperature at high densities.

In general, the conductivity rises in the whole range studied
here with increasing density. On the one hand, this is the
result of pressure ionization which increases the amount of
conducting electrons, and on the other hand, even in the case
of a fully ionized system, a rising density of electrons results
in a further increase of the conductivity.

At T = 1000 K the liquid-liquid phase transition which
was previously reported for dense hydrogen22,23 can be
identified by the steep increase of the conductivity over several
orders of magnitude in a small density interval, (0.7 − 0.9)
g/cm3. At temperatures higher than 1500 K the transition
is continuous and the increase spreads to a larger range
in density. At densities below this transition the electrical
conductivity increases with temperature which is caused by
thermal ionization of neutral particles. The additional free
charges contribute to the conductivity.

At densities above this transition the dependence on
temperature is inverted: The electrical conductivity decreases
with temperature, which is typical for metals. Increasing
temperature broadens the Fermi function and therefore allows
additional electron scattering processes which reduce their
mobility. As a result, the conductivity is lower with increasing
temperature.

This behavior is also illustrated in Fig. 2, which shows
the electrical conductivity along isochores for different tem-
peratures. The conductivity decreases for temperatures above
2000 K along the isochores for densities higher than 0.9 g/cm3,
which are characteristic of the metallic phase. This indicates
that most of the system is ionized and thus acts metal-like.
Looking at lower densities the conductivity rises along the
whole temperature range, which is due to thermal ionization.
The isochores clearly show the general behavior of a rising
conductivity with increasing density.

Experiments in copper plasmas69 have indicated that the
electrical conductivity becomes a function of only the coupling
parameter ! for values of ! ! 10. The plasma parameter ! is
defined by

! = e2

4πε0kBT

(
4πne

3

) 1
3

, (20)

FIG. 2. (Color online) Electrical conductivity for different densi-
ties versus temperature.

where ne is the number density of free electrons. Although
such a behavior could not be confirmed later,70 a simple
functional form of the electrical conductivity at high values
of ! is still under discussion. To investigate whether such a
simple scaling is valid in dense liquid hydrogen, the results
for the electrical conductivity shown in Figs. 1 and 2 are
plotted against ! in Fig. 3. Only for temperatures higher than
10 000 K is the system strongly ionized. At lower temperatures
the occurrence of partial ionization prevents a proper calcula-
tion of ! within FT-DFT-MD, because the method does not
distinguish between bound and free electrons. Therefore, we
do not plot results for lower temperatures in Fig. 3.

The isotherms appear to be almost parallel in this loga-
rithmic plot and are clearly separated. Even at the highest
available values for ! " 60 the isotherms do not tend to
merge. We conclude that it is not possible to derive a simple
temperature-independent relation for the conductivity that
depends solely on the parameter ! as it was proposed earlier
for other metallic liquids.

FIG. 3. (Color online) Electrical conductivity as function of the
coupling parameter ! for different temperatures. The plotted data
cover a density range of (0.05–20) g/cm3.
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FIG. 4. (Color online) Thermal conductivity versus density for
different temperatures. The values increase with temperature.

B. Thermal conductivity

The isotherms of the thermal conductivity are plotted
in Fig. 4. They show a similar behavior as the electrical
conductivity and indicate a sharp nonmetal-to-metal transition
at a temperature below 1500 K. At this transition the thermal
conductivity increases over several orders of magnitude in a
narrow density range at about 0.9 g/cm3. The increase in the
thermal conductivity is due to the growing number of delocal-
ized electrons which are produced along the phase transition.
Above the critical temperature this transition becomes broader
and is caused by a combination of pressure and temperature
ionization.

In contrast to the behavior of the electrical conductivity,
the thermal conductivity does not decrease with temperature
in the metallic phase. The isotherms increase systematically
with temperature for all densities.

This is also shown along the isochores of the thermal
conductivity that are plotted in Fig. 5. These curves depict
likewise that the thermal conductivity rises invariably with
increasing density and temperature.

FIG. 5. (Color online) Thermal conductivity versus temperature
for different densities.

C. Thermopower

The thermopower α characterizes the generation of an
electric field as a response to a temperature gradient. For
most systems this electric field has a direction opposite to the
temperature gradient, which results in a negative thermopower.
The thermopower is most sensitive to changes in the electronic
structure since it can be expressed as the derivative of the
logarithm of the electronic conductivity with respect to the
energy at the Fermi surface.71 Such a relation, which is also
known as Mott formula, follows from the Kubo-Greenwood
equation (19) in the degenerate domain under strong scattering
conditions.

Interestingly, large positive values for the thermopower
were measured in fluid mercury72,73 near the liquid-vapor criti-
cal point, which is located at Tc = 1751 K and "c = 5.8 g/cm3.
In this region, isotherms of the electrical conductivity near Tc

show a strong increase with the density, which is steepest just at
the critical density "c. This behavior was assumed to be related
to fluctuations in the electron density, which are pronounced
near the critical point due to critical fluctuations. In particular,
a zero of the thermopower was observed exactly at the critical
density. The interesting question arises as to whether a zero of
the thermopower is a precursor of a first-order phase transition
in dense liquids which undergo a nonmetal-to-metal transition.
Wide regions with a positive thermopower have been predicted
for dense hydrogen by a simple chemical model34 but were not
confirmed in an advanced chemical approach16 by ab initio
simulations or by experiments yet.

In Fig. 6 isotherms of the thermopower α are plotted as
function of the density. The symbols represent the results
from the simulations and the error bars show the statistical
uncertainties. As guide to the eye, polynomial functions were
fitted to the numerical results. The thermopower is mostly
negative and reaches a value of about zero at high densities. At
lower densities the thermopower decreases. The low density
limit of α = −60.60 µV/K is known from the Spitzer theory
(see, e.g., Ref. 16). With higher temperatures the negative
values become systematically larger. We expect that these
values become smaller again at low densities to reach the
Spitzer limit. The thermopower shows positive mean values
below 20 000 K and between 0.2 g/cm3 and 0.5 g/cm3. These

FIG. 6. (Color online) Thermopower versus density for different
temperatures.
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Hard to converge for reasonable temperatures in crystalline materials.



SUMMARY
The nuclear motion affects the electronic structure:
Real-part of the self-energy: renormalization of the eigenvalues

Imaginary-part of the self-energy: finite lifetimes/broadening

Perturbative approaches have reached a maturity level that 
allows the routinely assessment of electron-phonon coupling.

Anharmonic effects are still a massive challenge in this field.


