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Nuclear Hamiltonian (classical) and the canonical ensemble

H(p,q) = ZW + Vo1 - )
I/

* Probability in the canonical ensemble (N, V, T fixed) given by

_ﬁH(p9Q)
e —
P(p.q) = —— B = 1/k,T _ Jdpjdqe BH(p.g)



Probabilities and averages

» |n classical mechanics, positions and momenta are not correlated
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Probabilities and averages

» |n classical mechanics, positions and momenta are not correlated
. _
o PP 12M e PV

PP @) = DI = s [ dge-pva

» The blue term is easy to calculate, while the red term tends to be very difficult.
Important because:

(A(g)) = Jdpdqg’(p, QA(qg) = quA(q)@(q)

(A(q9)B(q,)) = [dpdqg’(p, q)A(qy)B(q,) = [dq@(q)A(qO)B(%)



Static and equilibrium properties at finite T
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Static and equilibrium properties at finite T

(A(g)) = Jdpdqg’(p, QA(qg) = quA(q)g’(q)

® Calculating such integrals on a grid scales as G*" (G grid points, N atoms)

® |nstead, it is better to perform some sort of importance sampling
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Static and equilibrium properties at finite T

(A(g)) = Jdpdqg’(p, QA(qg) = quA(q)g’(q)

® Calculating such integrals on a grid scales as G*" (G grid points, N atoms)

® |nstead, it is better to perform some sort of importance sampling

® (Generate many Q2
configurations ¢,

according to &(g) and
calculate

1 M
(A@) ~ — Zl A(g,)
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The Hamiltonian time evolution

Pr
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The Hamiltonian time evolution

P
H(pa q) — Z T VBO(QD e ooy QN)
- 2M
oH Dy , H
q=—=— Plz__z_VIV(Q)
op; M, 0q;

® Configurations created by this time evolution are consistent with and conserve &(p, g)

dr(p,q)  _yzydH

= X e E = () @(P()a Q()) — t@(pt’ Q't)



Static and equilibrium properties at finite T

® Ergodic hypothesis: ensemble average equal to time average

1 T
(A(q)) = Jdpdqg’(p, PA(q) = IimHoo—J Alq(?)]dt
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Static and equilibrium properties at finite T

® Ergodic hypothesis: ensemble average equal to time average

1 T
(A(q)) = Jdpdqg’(p, PA(q) = IimHoo—J Alq(?)]dt

T Jo

Can be calculated through “molecular dynamics™

q2

q

Energy



How to get (classical) trajectories?

Molecular dynamics

(q1,P1)
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Molecular dynamics
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Integrating the equations of motion

* Taylor expansion of g

q(t+ Ar) = qg(t) + Atg(r) + %éj(t)Atz + O(AF)



Integrating the equations of motion

* Taylor expansion of g

gt + Af) = g(t) + Atg(F) + %bj(t)Atz + O(AF)

q(t — At) = q(t) — Atq(?) + %é(t)Atz — O(Ar)
==

VV(g(®) _ F@
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Integrating the equations of motion

* Taylor expansion of g

gt + Af) = g(t) + Atg(F) + %bj(t)Atz + O(AF)

q(t — At) = q(t) — Arg(?) + lé(t)At2 — O(Ar)

2
+
- N/, YV _Fw
q(t + At) + g(t — Ar) = 2q(1) M M
* "Velocity Verlet”
g(t + At) = g(t) + il At
M

“Verlet” is time reversible and symplectic

9



Symmetric splitting of velocity Verlet

* Implemented in most codes (including FHI-aims)

One Step

i+ 20 = g+ 22
T =TT

At
q(t+ Ar) = q(t) + g(t + T)At

Evaluate F(zr + Ar) from g(¢ + A¢)

in An g AL, FUH 8D A
1 - M 2

Compute any instantaneous properties at step At

10



The ab initio forces

“Evaluate F(¢t + Ar) from g(¢t + Ap)”

F(g) = — V [min,E[p]]

® C(Calculating these forces tends not to be trivial within an electronic structure architecture
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The ab initio forces

“Evaluate F(¢t + Ar) from g(¢t + Ap)”

F(g) = — V [min,E[p]]

® C(Calculating these forces tends not to be trivial within an electronic structure architecture

® |n FHI-aims we have (at least!):

F = FAF 4 pP 4 pNSC 4 pmp

/ \ artree pot.

multipole expansion

ellman-Feynman

+ FYaW o pexx



The Hellman-Feynman and Pulay forces

® [he Harris functional

1
Elp] = Z fe, —— j p(r)vydr — J p(r)v, dr + E _|p| + Eyy
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® [he Harris functional

|
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The Hellman-Feynman and Pulay forces

® [he Harris functional

1
Elp)= ) fei=> [p(r)der - Jp(r)vxcdr + E[p] +

_ SE[p(r;R).R]

® T[he forces

F =
OR
® Hellman-Feynman forces
€ = <'//i‘ilKSh//i>
oLt 0
FHF — NN J' r ext Adr
oR, Pks(T) oR,

12



The Hellman-Feynman and Pulay forces

® Pulay forces come from

D JBei= ) Wil Shyes )+ D FOwi s Ly + D filwi | s | )

® They would be zero in the complete basis set limit even for atom-centred basis sets
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The Hellman-Feynman and Pulay forces

® Pulay forces come from

D JBei= ) Wil Shyes )+ D FOwi s Ly + D filwi | s | )

® They would be zero in the complete basis set limit even for atom-centred basis sets

o Byusingy,=)» c.o,and ) c,h,=e ) cs,, Plus imposing 5(y;ly;) = 8( ) s,.ckc,) = 0
y v

17 u

0y
P_ _ z: kA (P
Fc _ 2Re lCiMClI/< OR ‘ hKS € ‘ (pv>

LUY

® “Beyond LDA” functionals and relativistic corrections add further terms to the Pulay
forces. See Blum et al., CPC (2009)

13



Hartree potential non-self-consistent force correction

® Still not the whole story.The energy functional at a given m SCF step is actually

1
E™lpl= ), f"e"™ = Jp(m‘“ir)v}{m‘”dr - Jﬂ(m‘”(r)vi’é"‘”dr + E[p"™ V1 + Eyy
l

® After some math we get

Sugy Y sV

FNSC:J' (m=D(r) — pr))—= dr+J m=D(r) — p™(r))———dr
(P (r) = prT)) 5K, (P (r) = pp () 5K,
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Hartree potential non-self-consistent force correction

® Still not the whole story.The energy functional at a given m SCF step is actually

1
E™lpl= ), f"e"™ = Jp(m‘“ir)v}{m‘”dr - Jﬂ(m‘”(ﬂvi’é”“”dr + E[p"™ V1 + Eyy
l

® After some math we get

sy oy
FW¢ = I(p(’"‘”(r) — plr)) dr + J(p“"‘”(r) — pI(r)) dr
OR, OR,

Implemented in 2021 by Herzain Rivera & Mariana Rossi

14



Need of accurate self-consistency

* Hamiltonian dynamics (microcanonical ensemble): Energy should be conserved!

* How close to self consistency do we need to be!

|5



Need of accurate self-consistency

* Hamiltonian dynamics (microcanonical ensemble): Energy should be conserved!

* How close to self consistency do we need to be!

B I I I I | I I I I | I I I I |
- large thresholds for <
0.05 energy and density convergence —
_ - (cheaper!) -
> 0.04] —
= | BOMD: C,H, :
20 0.03f -
= - -
D) B _
= 0.02[ —
E - -
0.01F small thresholds for —
- energy and density convergence -
0 i
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Time [ps]
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Hartree potential non-self-consistent force correction

* [mpact of non-self-consistent force correction term from Hartree potential

Zundel cation

0.5-
— 1e-6, no NSC
— Te-3, with NSC
041 — 1e-2, with NSC
S
o 0.3
>
)
. -
Q
5 0.2

o
—

O
=
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Time step and the accuracy of integration

At = 3fs

i ) p

17



Time step and the accuracy of integration

At = 3fs

;-u-l(’
>
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Time step and the accuracy of integration

At = 3fs

b

* What is a good time step!

* Depends on the highest
vibrational frequency (thus mass)
of your system

(wr \/k/M)
e Typically, choose a time step

corresponding to ~ | /(100Wmax)
(femtosecond time scale)

17



A bit about Car-Parrinello MD

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471-2474 (1985)

® Extended Lagrangian: add (fictitious) degrees of freedom for the electrons in the Lagrangian and
solve coupled equations of motion

-1 ZMIR?MLZ/drI@(P,t)IQ —V (¢, 9" R) +2)\;; /dmff(rvt)%(rvt) — 0ij
T 0 - - ]

2

|18



A bit about Car-Parrinello MD

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471-2474 (1985)

® Extended Lagrangian: add (fictitious) degrees of freedom for the electrons in the Lagrangian and
solve coupled equations of motion

Lagrange multipliers

1| . . | ¢ |
L= _;MIR?@/dr@(r,t)Q_ - V(p, o) R) /drﬁ(r,t)%(rat) —%'_

Fictitious Kohn-Sham
electron mass orbitals
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A bit about Car-Parrinello MD

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471-2474 (1985)

® Extended Lagrangian: add (fictitious) degrees of freedom for the electrons in the Lagrangian and
solve coupled equations of motion

Lagrange multipliers

1| . . | _
L= _;MIR?@/@@(M)Q_ - V(p, o) R) /drﬁ(r,t)%(rat) —52-3-_

Fictitious Kohn-Sham
electron mass orbitals

. . 1oV(op, 0™ R
Mty = —V,V(6,6"R) PAEEELIAGLELUN oW
J

2 0]
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A bit about Car-Parrinello MD

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471-2474 (1985)

® Extended Lagrangian: add (fictitious) degrees of freedom for the electrons in the Lagrangian and
solve coupled equations of motion

Lagrange multipliers

1| . . | ¢ |
L= _;MIR%@/dr¢i(rat)2_ - V(p, o) R) /drﬁ(r,t)%(rat) —52-3-_

Fictitious Kohn-Sham
electron mass orbitals
MR = -V V(¢,0"; R) poi = : (5& ) | Z(bj)\jz'
! J

® Adiabatic separation: fictitious mass of the electrons need to be very small = smaller time step

® Electrons “follow” nuclei - avoids self consistency calculation at every step

|18



Other Acceleration Techniques

J. Kolafa JCC 25, 335 (2004);T. Kiihne, et al. PRL 98,066401 (2007); Steneteg et al., PRB 82,075110 (2010); Niklasson JCTC 16 (2020)

® |dea: Use a very good guess for the wave function of the “next step”. Ensuring time-reversibility is
key for stability of propagation.

19



Other Acceleration Techniques
J. Kolafa JCC 25, 335 (2004);T. Kiihne, et al. PRL 98,066401 (2007); Steneteg et al., PRB 82,075110 (2010); Niklasson JCTC 16 (2020)

® |dea: Use a very good guess for the wave function of the “next step”. Ensuring time-reversibility is
key for stability of propagation.

® Naive (and frequently used): Use converged electronic density from previous step
® More involved:

® Extrapolate electronic density (or flavors of the density matrix) based on information of
previous time steps

® Formulate types of extended Lagrangian formalisms with auxiliary variables (density, wave
functions) that move in a harmonic potential around the self-consistent solution

i = zj: c@- ¢ = Cy (IP: cTc

Basis Sets Density Matrix
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Other Acceleration Techniques
J. Kolafa JCC 25, 335 (2004);T. Kiihne, et al. PRL 98,066401 (2007); Steneteg et al., PRB 82,075110 (2010); Niklasson JCTC 16 (2020)

® |dea: Use a very good guess for the wave function of the “next step”. Ensuring time-reversibility is
key for stability of propagation.

® Naive (and frequently used): Use converged electronic density from previous step
® More involved:

® Extrapolate electronic density (or flavors of the density matrix) based on information of
previous time steps

® Formulate types of extended Lagrangian formalisms with auxiliary variables (density, wave
functions) that move in a harmonic potential around the self-consistent solution

W=Xef) ¢=Cr  @-cC
| ¥
] Basis Sets Density Matrix

® Some of these techniques have been implemented in FHI-aims with limited success. Ongoing efforts!

19



Temperature control: the canonical ensemble

e The idea: couple the system to a thermostat (heat bath)
e |[nteresting because:
e Experiments are usually done at constant temperature

e Better modeling of conformational changes

Energy is
conserved

Energy is
not conserved

20



Nose-Hoover thermostat

S.Nose, J.Chem. Phys. 81,511 (1984) & W. G. Hoover, Phys. Rev.A 31, 1695 (1985).

Extended Hamiltonian (or Lagrangian):

2
P
2Q)

2
HNE = Z DL V(R) A - 3NkgTn

- 2M

21



Nose-Hoover thermostat

S.Nose, J.Chem. Phys. 81,511 (1984) & W. G. Hoover, Phys. Rev.A 31, 1695 (1985).

Extended Hamiltonian (or Lagrangian):

Original system Fictitious Oscillator
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Nose-Hoover thermostat

S.Nose, J.Chem. Phys. 81,511 (1984) & W. G. Hoover, Phys. Rev.A 31, 1695 (1985).

Extended Hamiltonian (or Lagrangian):

Original system Fictitious Oscillator

® Momenta are damped by fictitious oscillator: p;r = F7y
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Nose-Hoover thermostat

S.Nose, J.Chem. Phys. 81,511 (1984) & W. G. Hoover, Phys. Rev.A 31, 1695 (1985).

Extended Hamiltonian (or Lagrangian):

Original system Fictitious Oscillator
. . - Pn
® Momenta are damped by fictitious oscillator: p; = F; 0 Pr

® FErgodicity problems - system may be stuck in a region of phase space

® Possible solution: Nose-Hoover chains
Attach another fictitious oscillator to the first, and another to the second, and another to the
third, ... (chain of fictitious oscillators)

Martyna, Klein, Tuckerman, J. Chem. Phys. 97,2635 (1992)
21



How to model a thermostat: first ideas

® Temperature rescaling: Berendsen “thermostat”
® Rescale velocities by a factor containing the ratio of target and instant temperature
® Does not sample the canonical ensemble (wrong temperature distribution)

® “Flying ice-cube” effect: rotations and translations acquire high Ex» and vibrations are frozen

H.J. C. Berendsen, et al. |. Chem. Phys. 81 3684 (1984)

22



How to model a thermostat: first ideas

® Temperature rescaling: Berendsen “thermostat”
® Rescale velocities by a factor containing the ratio of target and instant temperature
® Does not sample the canonical ensemble (wrong temperature distribution)

® “Flying ice-cube” effect: rotations and translations acquire high Ex» and vibrations are frozen

H.J. C. Berendsen, et al. |. Chem. Phys. 81 3684 (1984)

® Simple stochastic idea: Andersen thermostat

® At each nt" time-step, replace velocity of a random particle by one drawn from a Maxwell-
Boltzmann distribution at target temperature

® Not very efficient, no conserved quantity

® Very sensitive on n

H. C.Andersen, J. Chem. Phys. 72,2384 (1980) 7



Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, . Chem. Phys. 126,014101 (2007).

Combine concepts from velocity rescaling (fast!) with concepts from stochastic thermostats
(accurate!)

Target temperature follows a stochastic differential equation:

dr [ T(t)] dt 2\/ T(t)
T 1T | 7 STNT

&(1)
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Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, . Chem. Phys. 126,014101 (2007).

Combine concepts from velocity rescaling (fast!) with concepts from stochastic thermostats
(accurate!)

Target temperature follows a stochastic differential equation:

Temperature White noise
rescaling
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Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, . Chem. Phys. 126,014101 (2007).

Combine concepts from velocity rescaling (fast!) with concepts from stochastic thermostats
(accurate!)

Target temperature follows a stochastic differential equation:

Temperature White noise
rescaling

® Very successful thermostat, weakly dependent on relaxation time T

® Pseudo-Hamiltonian is conserved

Bussi, Parrinello, Phys. Rev. E 75,056707 (2007) 23



Langevin (stochastic) thermostat

S.A.Adelman and ]. D. Doll, J. Chem. Phys. 64,2375 (1976).

Model dynamics via the Langevin equation:

MR =F; — Ry +£(¢)

24



Langevin (stochastic) thermostat

S.A.Adelman and ]. D. Doll, J. Chem. Phys. 64,2375 (1976).

Model dynamics via the Langevin equation:

e

Original system Friction and White Noise

(&(1)€(0)) = 2kpTo(1)
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Langevin (stochastic) thermostat

S.A.Adelman and ]. D. Doll, J. Chem. Phys. 64,2375 (1976).

Model dynamics via the Langevin equation:

0

Original system Friction and White Noise

(&(1)€(0)) = 2kpTo(1)

® Sensitive ony

® For systems spanning a wide range of frequencies, how to achieve the “best” critical
damping!?

® Disturbs dynamics considerably

24



Colored noise thermostats

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010, 6, 1170-1180 (http://gledmd.org/index.html)

Extremely flexible class of thermostats based on the
Generalized Langevin Equation (GLE)

® Markovian (no memory) process in high dimensions

() - () w0 om
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Colored noise thermostats

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010, 6, 1170-1180 (http://gledmd.org/index.html)
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Generalized Langevin Equation (GLE)

® Markovian (no memory) process in high dimensions
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Colored noise thermostats

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010, 6, 1170-1180 (http://gledmd.org/index.html)

Extremely flexible class of thermostats based on the
Generalized Langevin Equation (GLE)

® Markovian (no memory) process in high dimensions

Py _
— B, (¢)
€xtra Original system Friction and White Noise
fictitious degrees
of freedom

® Non-Markovian process for the system (integrating out s):

p:F—/t drK(t — 7)p(7) + (1)

— OO

25



Colored noise thermostats

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010, 6, 1170-1180 (http://gledmd.org/index.html)

Extremely flexible class of thermostats based on the
Generalized Langevin Equation (GLE)

® Markovian (no memory) process in high dimensions

Py _
— B, (¢)
€xtra Original system Friction and White Noise
fictitious degrees
of freedom

® Non-Markovian process for the system (integrating out s):

p:F—/_tood(T)-l—

Memory Kernel Colored Noise

Fluctuation Dissipation: H (t) = (((¢t)((0)) = kT K (t)

25



Pressure control: Isobaric-isothermic ensemble

® Definition of instantaneous pressure:

1
P(mt) _
B " det(h)

26



Pressure control: Isobaric-isothermic ensemble

® Definition of instantaneous pressure:
(int) — 1
ap det(h)

® Similar schemes as thermostats: pressure rescaling, extended Lagrangian, stochastic

pressure rescaling

Parinello and Rahman, |.Appl. Phys 52, 7182 (1981),
Bussi, Zykova-Timan, Parrinello, |. Chem. Phys. 130,074101 (2009)

26



Pressure control: Isobaric-isothermic ensemble

® Definition of instantaneous pressure:

1
P(mt) _
B " det(h)

® Similar schemes as thermostats: pressure rescaling, extended Lagrangian, stochastic

pressure rescaling

Parinello and Rahman, |.Appl. Phys 52, 7182 (1981);
Bussi, Zykova-Timan, Parrinello, |. Chem. Phys. 130,074101 (2009)

® Use thermostat together with a barostat to control pressure and temperature

26



The i-Pl wrapper code: sockets interface

The i-Pl code is a python interface for the calculation of (path integral ab initio) molecular dynamics

i-Pl communicates with the electronic structure codes through internet (or UNIX) sockets, making it
extremely flexible

Interfaced to many electronic structure codes (check our webpage!)

27



The i-Pl wrapper code: sockets interface

The i-Pl code is a python interface for the calculation of (path integral ab initio) molecular dynamics

i-Pl communicates with the electronic structure codes through internet (or UNIX) sockets, making it
extremely flexible

Interfaced to many electronic structure codes (check our webpage!)

http://ipi-code.org/

27



The i-Pl wrapper code: sockets interface

(PI)MD options 1-P1
ensemble, thermostat, Server

forces options

initial configuration,. .. forcefield, functional,

atomic species, ...

INITTALIZATION

I client 1
Client n
\

Can be several different codes too

. pfCOMPUT!
- [| ENERGY
-1 & FORCES

28



The i-Pl wrapper code: sockets interface

(PI)MD options 1-P1
ensemble, thermostat, Server

forces options

forcefield, functional,

initial configuration,. ..

atomic species, ...

E - client 1§ INITIALIZATION
=pe] . pCOMPUT!

= o O l ENERGY

28 7 - [ & FORCES

a :

I client n
\

Can be several different codes too

28



Communication in HPC systems

® The point of using sockets is to enable remote execution — server must talk to client

® |[n HPC systems it might not be trivial

a)

HPC system

internal network

29



Communication in HPC systems

® The point of using sockets is to enable remote execution — server must talk to client
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Communication in HPC systems

® The point of using sockets is to enable remote execution — server must talk to client

® |[n HPC systems it might not be trivial

a)

b)
HPC system

: work-
HPC system —— 1-Pl

job/ station

head node

' CLIENT 1 |

' CLIENT 2 |

internal network

internal network :
Internet

29



Molecular Crystals: Free Energy Differences

A = Ecryst/N-Enmol Rossi, Gasparotto, Ceriotti, PRL 117, 15702 (2016)

Force Field "
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Molecular Crystals: Free Energy Differences

A = Ecryst/N-Emor Rossi, Gasparotto, Ceriotti, PRL 117, 115702 (2016)

V(A = AVprr + (1 = A\)VFrr

1
VoA = / (Vorr — VER) xdA
0
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The Fully Quantum Free Energy Differences
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