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The problem to be addressed
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Macroscopic regime

Atomis/c level

• Ab initio atomistic thermodynamics (aiAT)

• Replica-Exchange Grand-Canonical method (REGC)

• Computational hydrogen electrode (CHE)

Ab ini(o thermodynamics:



Thermodynamics
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Thermodynamic poten;als
Internal energy

Enthalpy

Helmholtz free energy

Gibbs free energy

Thermodynamic equilibrium

Thermodynamics studies macroscopic systems 
i.e. composed of a large number of par;cles



Bridge between microscopic and macroscopic
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This is only a postulate but it works:

1> in equilibrium             max,             max

2>       is multiplicative,      is additive

: Number of microstates
in a given macrostate



Bridge between microscopic and macroscopic
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Probabilis;c interpreta;on of free energy

Classical sta;s;cs for nuclei
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Ab ini&o atomis6c Thermodynamics: ideal gas

Translational:

Rota;onal:

Vibra;onal:

Non-linear molecules

linear molecules

Vibra;onal frequencies
Harmonic oscillator

Rota;onal iner;a of a 
rigid molecule

Par;cle mass

Statistical Mechanics, D. A. McQuarrie, University Science Books, 2000
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Ab ini&o atomis6c Thermodynamics: ideal gas

Electronic:

Conforma;onal:

Symmetry number

Diatomic molecules
heteroatomic

homoatomic

Polyatomic molecules

Symmetry opera;ons

In most practical cases, we can neglect the interaction between nuclear spins 
Nulei:
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Rela6on between T, p and 𝝁

JANAF Thermochemical tables, D.R. Stull, H. Prophet. US Na=onal Bureau of Standards, Washington DC, 1971 
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Ab ini&o atomis6c thermodynamics (aiAT)

[1] Sta(s(cal Mechanics, D. A. McQuarrie, (2000)
[2] Weinert and Scheffler, Mater. Sci. Forum 25 (1986)
[3] Reuter and Scheffler Phys. Rev. B 65 (2001)

isothermal-isobaric ensemble (NpT)

The Gibbs free energy of adsorp/on



10

Ab ini&o atomis6c thermodynamics (aiAT)

[1] Sta(s(cal Mechanics, D. A. McQuarrie, (2000)
[2] Weinert and Scheffler, Mater. Sci. Forum 25 (1986)
[3] Reuter and Scheffler Phys. Rev. B 65 (2001)

isothermal-isobaric ensemble (NpT) From par//on func/on 

Gibbs free energy

The Gibbs free energy of adsorption

For ideal gas
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Ab ini&o atomis6c thermodynamics (aiAT)

[1] Sta(s(cal Mechanics, D. A. McQuarrie, (2000)
[2] Weinert and Scheffler, Mater. Sci. Forum 25 (1986)
[3] Reuter and Scheffler Phys. Rev. B 65 (2001)

DFT

isothermal-isobaric ensemble (NpT) From par//on func/on 

Gibbs free energy

The Gibbs free energy of adsorp/on

For ideal gas

discarded for solids

canceled out or treated at harmonic approxima/on
neglected
neglected
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Ab initio atomistic thermodynamics (aiAT)

[1] Sta(s(cal Mechanics, D. A. McQuarrie, (2000)
[2] Weinert and Scheffler, Mater. Sci. Forum 25 (1986)
[3] Reuter and Scheffler Phys. Rev. B 65 (2001)

DFT

isothermal-isobaric ensemble (NpT) From par//on func/on 

Gibbs free energy

The Gibbs free energy of adsorp/on

For ideal gas

discarded for solids

canceled out or treated at harmonic approxima/on
neglected
neglected

An  unbiased  sampling  of  the configura/onal and composi/onal space



An effective sampling in phase space
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• Numerous minima
• Large free-energy barriers
• Slow-diffusion issues



grand-canonical ensemble (µVT)

An effec6ve sampling in phase space: Replica-Exchange Grand-Canonical

Frenkel, D.; Smit, B. Understanding Molecular Simula:on: From Algorithms to Applica:ons; Academic Press: San Diego, 2002.

ü Sta/s/cal average over adsorp/on/desorp/on processes

ü Genera/on of possible defects by atoms’ inser/on or removal

ü Circumven/ng dissocia/on barrier

ü StraighJorward extension to mul/-component systems
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• Slow-diffusion issues



grand-canonical ensemble (µVT)

An effec6ve sampling in phase space: Replica-Exchange Grand-Canonical

Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Academic Press: San Diego, 2002.

ü Sta/s/cal average over adsorp/on/desorp/on processes

ü Genera/on of possible defects by atoms’ inser/on or removal

ü Circumven/ng dissocia/on barrier

ü StraighJorward extension to mul/-component systems
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Probability density

• Slow-diffusion issues

Realization of the Markov chain 



An effec6ve sampling in phase space: Replica-Exchange Grand-Canonical

Frenkel, D.; Smit, B. Understanding Molecular Simula:on: From Algorithms to Applica:ons; Academic Press: San Diego, 2002.

16

• Numerous minima
• Large free-energy barriers

ü Adding bias to Hamiltonian: 
metadynamics 
umbrella samling
accelerated molecular dynamics

ü A generalized ensemble: 
simulated tempering
mul/canonical sampling
parallel tempering (replica exchange)

appropriate collec/ve variables
convergence criterion

Not priori known probability 
weight factor

Known weight factor



An effec6ve sampling in phase space: Replica-Exchange Grand-Canonical

Frenkel, D.; Smit, B. Understanding Molecular Simula:on: From Algorithms to Applica:ons; Academic Press: San Diego, 2002.
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• Numerous minima
• Large free-energy barriers

Known weight factorparallel tempering (replica exchange)

Par//on func/on of extended NVT ensembles

Low T: thoroughly sampling in the local minimas

High T: jumpimg between minimas (basins) 



grand-canonical ensemble (µVT)

An effec6ve sampling in phase space: Replica-Exchange Grand-Canonical
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ü Sta/s/cal average over adsorp/on/desorp/on processes

ü Genera/on of possible defects by atoms’ inser/on or removal

ü Circumven/ng dissocia/on barrier

ü Kine/c barrier

ü StraighJorward extension to mul/-component systems

ü REGC coupled with molecular dynamics or monte carlo



An effec6ve sampling in phase space: Replica-Exchange Grand-Canonical

RE GC RE GC RE RE
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grand-canonical ensemble (µVT) ü Sta/s/cal average over adsorp/on/desorp/on processes

ü Genera/on of possible defects by atoms’ inser/on or removal

ü Circumven/ng dissocia/on barrier

ü Kine/c barrier

ü StraighJorward extension to mul/-component systems

ü REGC coupled with molecular dynamics or monte carlo



An effec6ve sampling in phase space: Replica-Exchange Grand-Canonical

grand-canonical ensemble (µVT) ü Sta/s/cal average over adsorp/on/desorp/on processes

ü Genera/on of possible defects by atoms’ inser/on or removal

ü Circumven/ng dissocia/on barrier

ü Kine/c barrier

ü StraighJorward extension to mul/-component systems

ü REGC coupled with molecular dynamics or monte carlo

2D schema/c of REGC
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An effec6ve sampling in phase space: Replica-Exchange Grand-Canonical
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grand-canonical ensemble (µVT) ü Sta/s/cal average over adsorp/on/desorp/on processes

ü Genera/on of possible defects by atoms’ inser/on or removal

ü Circumven/ng dissocia/on barrier

ü Kine/c barrier

ü StraighJorward extension to mul/-component systems

ü REGC coupled with molecular dynamics or monte carlo

Partition function of extended µVT ensembles2D schema/c of REGC



Replica-Exchange Grand-Canonical Scheme

Zhou, Scheffler and Ghiringhelli, Phys. Rev. B 100,  (2019)
https://gitlab.com/zhouyuanyuan/fhi-panda
Shirts and Chodera, J. Chem. Phys. 12 (2008)
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Scalability of REGC with FHI-aims

A REGCMD simula/on of Si(100) system with 64 replicas.
This was performed on 10 240 cores (160 core for the MD run of every replica)
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Free energy

Free energy from probabili6es: a posteriori

Ensemble average
partition function

probability
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Free energy

Free energy from probabili6es: a posteriori

Ensemble average

Reduced poten/al func/on for the GC ensemble

Grand-canonical density func/on

partition function

probability

L × M thermodynamic states
in REGC  simula;on

Mul/state Benne[ acceptance ra/o (MBAR) approach es/mates

in the MBAR formalism
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Zhou, Scheffler and Ghiringhelli, Phys. Rev. B 100,  (2019)
hXps://gitlab.com/zhouyuanyuan/Yi-panda
Shirts and Chodera, J. Chem. Phys. 12 (2008)



Free energy

Free energy from probabilities: a posteriori

Ensemble average

Reduced poten/al func/on for the GC ensemble

Grand-canonical density func/on

probability
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Zhou, Scheffler and Ghiringhelli, Phys. Rev. B 100,  (2019)
hXps://gitlab.com/zhouyuanyuan/Yi-panda
Shirts and Chodera, J. Chem. Phys. 12 (2008)

Ergodic hypothesis: ensemble average 
equal to ;me average



Proof of concept: Two-component Lennard-Jones surface

Results

Applica/on: Si(100) surface in contact with D2 reac/ve atmosphere at ab ini(o level
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Two-component Lennard-Jones surface

top
hollow

bridge

fcc(111)

Top view Side view

REGC: 10 temperatures and 16 chemical poten/als
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REGC(minimum-energy-structures) +aiATREGC+ MBAR

Two-component Lennard-Jones surface
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REGC(minimum-energy-structures) +aiATREGC+ MBAR

Two-component Lennard-Jones surface
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REGC+ MBAR

Two-component Lennard-Jones surface
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Two-component Lennard-Jones surface
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Zhou, Scheffler and Ghiringheli, Phys. Rev. B 100,  (2019)

T = 0 K

Two-component Lennard-Jones surface
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ab ini(o molecular dynamics
xc: PBE+vdWTS

basis se_ng: light
stochas/c velocity-rescaling thermostat
Using D2 instead of H2 during the simula/on

[1] C.Manzano, et. al., Phys. Rev. B., 83, 201302 (2011)
[2] J. J. Boland, Adv. Phys., 42, 129 (1993)
[3] Chabal and Raghavachari, Phys. Rev. LeH 100, 1055 (1985)
[4] Blum, et al., Comput. Phys. Commun. 180, 2175 (2009)
[5] Perdew, et al., Phys. Rev. LeH. 77, 3865 (2008)
[6] Tkatchenko, et al., Phys. Rev. LeH, 201, 073005 (2009)
[7] Bussi, et al., J. Chem. Phys. 126, 014101 (2007)
[8] Zhou, et al., unpublished

Si(100) surface in contact with D2 reactive atmosphere at ab initio level

(2×1)

(3×1)

s-(2×1) p-(2×1)

p-(2×2) c-(4×2)

reconstruc/on adsorption

H-terminated

surface zone

Model systems: (4×4) and (3×3) supercell
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Quantitative calculation of ab initio phase boundaries

in MBAR formalism
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Every 1 K and 0.01 eV interval



Quan6ta6ve calcula6on of ab ini&o phase boundaries

in MBAR formalism

36

Every 1 K and 0.01 eV interval



Quantitative calculation of ab initio phase boundaries

in MBAR formalism

: number of chemisorbed D (ND)
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Quan6ta6ve calcula6on of ab ini&o phase boundaries

in MBAR formalism

: number of chemisorbed D (ND)

300 KII

I



Quan6ta6ve calcula6on of ab ini&o phase boundaries

in MBAR formalism

: number of chemisorbed D (ND)

373 K

300 KII

I

I
IV

III

I



Quan6ta6ve calcula6on of ab ini&o phase boundaries

in MBAR formalism

: number of chemisorbed D (ND)
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373 K

382 K

300 KII

I

I
IV

IV

III

III

I



Quan6ta6ve calcula6on of ab ini&o phase boundaries
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Si-Si bond length =  3.0 Å
Si-H bond length =  2.0 Å

Descriptors for microstates

Coordination histogram is 0 3 6 0 0 0 6 3

Dimer type (𝜿dimer) 𝜿dimer = 0 𝜿dimer = 1

Number of chemisorbed hydrogen (ND)

Coordina;on histogram (Hcoord)
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Structural descriptors

Coordination histogram (Hcoord) Dimer type (𝜿dimer)
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NH = 0

NH = 16

T < 650 K T > 650 K

T < 580 K T > 580 K

Si(100)-(4×4) surface in contact with D2 reac6ve atmosphere at ab ini&o level
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Y. J. Chabal and K. Raghavachari, Phys. Rev. Lett 100, 1055 (1985)

ND = 12  380 K
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Si(100)-(3×3) surface in contact with D2 reac6ve atmosphere at ab ini&o level
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Si(100) surface in contact with D2 reactive atmosphere at ab initio level

Reduced poten/al func/on for the GC ensemble

:the poten/al energy of the unreconstructed Si(100) surface 
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Si(100) surface in contact with D2 reac6ve atmosphere at ab ini&o level

Reduced poten/al func/on for the GC ensemble

1.48±0.05 ps
800K 

Average bond lifeWme:  1.63±0.06 ps, 800K 

Adsorbed D slow the dynamics of dimer bonds

:the poten/al energy of the unreconstructed Si(100) surface 
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REGC@MBAR vs. aiAT@harmonic approximation

Reduced poten/al func/on for the GC ensemble

Anharmonic contribu/ons: dynamical restructuring of Si-Si dimers 

:the poten/al energy of the unreconstructed Si(100) surface 

3x1
2x1
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Thermodynamic overpoten6al

Elementary steps

Nørskov, Rossmeisl, Logado3r, Lindqvist, Kitchin, Bligaard and  Jonsson J. Phys, Chem, B. 108, 17886, (2004) 

In an acid environment, O2 reduc/on the associa/ve mechanism 

Computa/onal hydrogen electrode model

Chemical poten.al of is half of H2 when SHE is the reference potential

A bias effect of electron in the electrode

pH effect

Solvent and dipole effect is neglected
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Thermodynamic overpoten6al

Elementary steps

Nørskov, Rossmeisl, Logado3r, Lindqvist, Kitchin, Bligaard and  Jonsson J. Phys, Chem, B. 108, 17886, (2004) 

In an acid environment, O2 reduction the associative mechanism 

Computa/onal hydrogen electrode model

Reac%on steps
4(H++e-) 3(H++e-) 2(H++e-) H++e-

O2

OOH*

O*

OH*

H2O

Chemical poten.al of is half of H2 when SHE is the reference poten.al

A bias effect of electron in the electrode

pH effect

Solvent and dipole effect is neglected



Summary & outlook

The Replica-Exchange Grand-Canonical ab ini(o Molecular Dynamics method:

to quantitatively determine ab initio phase boundaries.

✔ to address surface composi/on and geometry at cataly/c (T, p) cond/ons.

✔ to calculate T-p dependence of any (atom posi/on dependent) observable.
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Ab ini(o atomi/c thermodynamics method:

well-defined systems: screened structures

✔ (quasi)-harmonic approaxima/on

✔ is negligible

✗ Fixed volume
✗ Insertion directly into the lattice (lattice expansion/change)
✗ Kinetics of reactions: combined with  methods e.g., Markov 

state models
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