The ab initio materials simulation package

Tutorial Series: Ab initio molecular dynamics

Mariana Rossi

Max Planck Institute for the Structure and Dynamics of Matter
Fritz Haber Institute of the MPG

Addressing nuclear degrees of freedom

Schrödinger Equation

$$
\hat{H} \Psi=E \Psi \quad i \hbar \frac{\partial \Psi(t)}{\partial t}=\hat{H} \Psi(t)
$$

Addressing nuclear degrees of freedom

Schrödinger Equation

$$
\hat{H} \Psi=E \Psi \quad i \hbar \frac{\partial \Psi(t)}{\partial t}=\hat{H} \Psi(t)
$$

Born-Oppenheimer approximation: $\Psi=\psi_{e} \times \chi_{n}$

Addressing nuclear degrees of freedom

Schrödinger Equation

$$
\hat{H} \Psi=E \Psi \quad i \hbar \frac{\partial \Psi(t)}{\partial t}=\hat{H} \Psi(t)
$$

Born-Oppenheimer approximation: $\Psi=\psi_{e} \times \chi_{n}$

Addressing nuclear degrees of freedom

Schrödinger Equation

$$
\hat{H} \Psi=E \Psi \quad i \hbar \frac{\partial \Psi(t)}{\partial t}=\hat{H} \Psi(t)
$$

Born-Oppenheimer approximation: $\Psi=\psi_{e} \times \chi_{n}$

Addressing nuclear degrees of freedom

Schrödinger Equation

$$
\hat{H} \Psi=E \Psi \quad i \hbar \frac{\partial \Psi(t)}{\partial t}=\hat{H} \Psi(t)
$$

Born-Oppenheimer approximation: $\Psi=\psi_{e} \times \chi_{n}$

Nuclear Hamiltonian (classical) and the canonical ensemble

$$
H(\mathbf{p}, \mathbf{q})=\sum_{I=1}^{N} \frac{p_{I}^{2}}{2 M_{I}}+V_{B O}\left(q_{1}, \ldots, q_{N}\right)
$$

- Probability in the canonical ensemble (N, V, T fixed) given by

$$
\mathscr{P}(p, q)=\frac{e^{-\beta H(p, q)}}{Z} \quad \beta=1 / k_{B} T \quad Z=\int d p \int d q e^{-\beta H(p, q)}
$$

Probabilities and averages

- In classical mechanics, positions and momenta are not correlated

$$
\mathscr{P}(p, q)=\mathscr{P}(p) \mathscr{P}(q)=\frac{e^{-\beta p^{2} / 2 M}}{\int d p e^{-\beta p^{2} / 2 M}} \frac{e^{-\beta V(q)}}{\int d q e^{-\beta V(q)}}
$$

Probabilities and averages

- In classical mechanics, positions and momenta are not correlated

$$
\mathscr{P}(p, q)=\mathscr{P}(p) \mathscr{P}(q)=\frac{e^{-\beta p^{2} / 2 M}}{\int d p e^{-\beta p^{2} / 2 M}} \frac{e^{-\beta V(q)}}{\int d q e^{-\beta V(q)}}
$$

- The blue term is easy to calculate, while the red term tends to be very difficult. Important because:

$$
\begin{aligned}
\langle A(q)\rangle & =\int d p d q \mathscr{P}(p, q) A(q)=\int d q A(q) \mathscr{P}(q) \\
\left\langle A\left(q_{0}\right) B\left(q_{t}\right)\right\rangle & =\int d p d q \mathscr{P}(p, q) A\left(q_{0}\right) B\left(q_{t}\right)=\int d q \mathscr{P}(q) A\left(q_{0}\right) B\left(q_{t}\right)
\end{aligned}
$$

Static and equilibrium properties at finite T

$$
\langle A(q)\rangle=\int d p d q \mathscr{P}(p, q) A(q)=\int d q A(q) \mathscr{P}(q)
$$

Static and equilibrium properties at finite T

$$
\langle A(q)\rangle=\int d p d q \mathscr{P}(p, q) A(q)=\int d q A(q) \mathscr{P}(q)
$$

Static and equilibrium properties at finite T

$$
\langle A(q)\rangle=\int d p d q \mathscr{P}(p, q) A(q)=\int d q A(q) \mathscr{P}(q)
$$

- Calculating such integrals on a grid scales as $G^{3 N}$ (G grid points, N atoms)
- Instead, it is better to perform some sort of importance sampling

Static and equilibrium properties at finite T

$$
\langle A(q)\rangle=\int d p d q \mathscr{P}(p, q) A(q)=\int d q A(q) \mathscr{P}(q)
$$

- Calculating such integrals on a grid scales as $G^{3 N}$ (G grid points, N atoms)
- Instead, it is better to perform some sort of importance sampling
- Generate many configurations q_{s} according to $\mathscr{P}(q)$ and calculate

$$
\langle A(q)\rangle \approx \frac{1}{M} \sum_{s=1}^{M} A\left(q_{s}\right)
$$

The Hamiltonian time evolution

$$
\begin{array}{r}
H(\mathbf{p}, \mathbf{q})=\sum_{I} \frac{p_{I}}{2 M}+V_{B O}\left(q_{1}, \ldots, q_{N}\right) \\
\dot{q}_{I}=\frac{\partial H}{\partial p_{I}}=\frac{p_{I}}{M_{I}} \quad \dot{p}_{I}=-\frac{\partial H}{\partial q_{I}}=-\nabla_{I} V(q)
\end{array}
$$

The Hamiltonian time evolution

$$
\begin{array}{r}
H(\mathbf{p}, \mathbf{q})=\sum_{I} \frac{p_{I}}{2 M}+V_{B O}\left(q_{1}, \ldots, q_{N}\right) \\
\dot{q}_{I}=\frac{\partial H}{\partial p_{I}}=\frac{p_{I}}{M_{I}} \quad \dot{p}_{I}=-\frac{\partial H}{\partial q_{I}}=-\nabla_{I} V(q)
\end{array}
$$

- Configurations created by this time evolution are consistent with and conserve $\mathscr{P}(p, q)$

$$
\frac{d \mathscr{P}(p, q)}{d t} \propto e^{-\beta H} \frac{d H}{d t}=0 \quad \mathscr{P}\left(p_{0}, q_{0}\right)=\mathscr{P}\left(p_{t}, q_{t}\right)
$$

Static and equilibrium properties at finite T

- Ergodic hypothesis: ensemble average equal to time average

$$
\langle A(q)\rangle=\int d p d q \mathscr{P}(p, q) A(q)=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} A[q(t)] d t
$$

Static and equilibrium properties at finite T

- Ergodic hypothesis: ensemble average equal to time average

$$
\langle A(q)\rangle=\int d p d q \mathscr{P}(p, q) A(q)=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} A[q(t)] d t
$$

Static and equilibrium properties at finite T

- Ergodic hypothesis: ensemble average equal to time average

$$
\langle A(q)\rangle=\int d p d q \mathscr{P}(p, q) A(q)=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} A[q(t)] d t
$$

Can be calculated through "molecular dynamics"

How to get (classical) trajectories?

Molecular dynamics

$\left(\boldsymbol{q}_{2}, \boldsymbol{p}_{2}\right) \xlongequal[\left(\boldsymbol{q}_{3}, \boldsymbol{p}_{3}\right)]{\left(\boldsymbol{q}_{1}, \boldsymbol{p}_{1}\right)} \quad$ I. Assign initial $\boldsymbol{q}^{(\text {position }) ~ a n d ~} \boldsymbol{p}$ (momenta)

How to get (classical) trajectories?

Molecular dynamics

How to get (classical) trajectories?

Molecular dynamics

2. Evolve (numerically) Newton's equation of motion for a finite time increment

How to get (classical) trajectories?

Molecular dynamics

Integrating the equations of motion

- Taylor expansion of q

$$
q(t+\Delta t)=q(t)+\Delta t \dot{q}(t)+\frac{1}{2} \ddot{q}(t) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right)
$$

Integrating the equations of motion

- Taylor expansion of q

$$
\begin{aligned}
& \quad q(t+\Delta t)=q(t)+\Delta t \dot{q}(t)+\frac{1}{2} \ddot{q}(t) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right) \\
& \\
& \hline \quad q(t-\Delta t)=q(t)-\Delta t \dot{q}(t)+\frac{1}{2} \ddot{q}(t) \Delta t^{2}-\mathcal{O}\left(\Delta t^{3}\right) \\
& q(t+\Delta t)+q(t-\Delta t)=2 q(t)+\ddot{q}(t) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)
\end{aligned}-\frac{\nabla V(q(t))}{M}=\frac{F(t)}{M}
$$

Integrating the equations of motion

- Taylor expansion of q

$$
\begin{aligned}
& q(t+\Delta t)=q(t)+\Delta t \dot{q}(t)+\frac{1}{2} \ddot{q}(t) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right) \\
& \\
& \hline q(t-\Delta t)=q(t)-\Delta t \dot{q}(t)+\frac{1}{2} \ddot{q}(t) \Delta t^{2}-\mathcal{O}\left(\Delta t^{3}\right) \\
& q(t+\Delta t)+q(t-\Delta t)=2 q(t)+\ddot{q}(t)-\frac{\nabla V(q(t))}{M}=\frac{F(t)}{M}
\end{aligned}
$$

- "Velocity Verlet"

$$
\dot{q}(t+\Delta t)=\dot{q}(t)+\frac{F(t)}{M} \Delta t
$$

Symmetric splitting of velocity Verlet

- Implemented in most codes (including FHI-aims)

One Step

$$
\begin{gathered}
\dot{q}\left(t+\frac{\Delta t}{2}\right)=\dot{q}(t)+\frac{F(t)}{M} \frac{\Delta t}{2} \\
q(t+\Delta t)=q(t)+\dot{q}\left(t+\frac{\Delta t}{2}\right) \Delta t
\end{gathered}
$$

Evaluate $F(t+\Delta t)$ from $q(t+\Delta t)$

$$
\dot{q}(t+\Delta t)=\dot{q}\left(t+\frac{\Delta t}{2}\right)+\frac{F(t+\Delta t)}{M} \frac{\Delta t}{2}
$$

Compute any instantaneous properties at step Δt

The $a b$ initio forces

"Evaluate $F(t+\Delta t)$ from $q(t+\Delta t) "$

$$
F(q)=-\nabla_{q}\left[\min _{\rho} E[\rho]\right]
$$

- Calculating these forces tends not to be trivial within an electronic structure architecture

The $a b$ initio forces

"Evaluate $F(t+\Delta t)$ from $q(t+\Delta t) "$

$$
F(q)=-\nabla_{q}\left[\min _{\rho} E[\rho]\right]
$$

- Calculating these forces tends not to be trivial within an electronic structure architecture
- In FHI-aims we have (at least!):

The $a b$ initio forces

"Evaluate $F(t+\Delta t)$ from $q(t+\Delta t) "$

$$
F(q)=-\nabla_{q}\left[\min _{\rho} E[\rho]\right]
$$

- Calculating these forces tends not to be trivial within an electronic structure architecture
- In FHI-aims we have (at least!):

The Hellman-Feynman and Pulay forces

- The Harris functional

$$
E[\rho]=\sum_{i} f_{i} \varepsilon_{i}-\frac{1}{2} \int \rho(\mathbf{r}) \nu_{H} d \mathbf{r}-\int \rho(\mathbf{r}) \nu_{x c} d \mathbf{r}+E_{x c}[\rho]+E_{N N}
$$

The Hellman-Feynman and Pulay forces

- The Harris functional

$$
E[\rho]=\sum_{i} f_{i} \varepsilon_{i}-\frac{1}{2} \int \rho(\mathbf{r}) \nu_{H} d \mathbf{r}-\int \rho(\mathbf{r}) \nu_{x c} d \mathbf{r}+E_{x c}[\rho]+E_{N N}
$$

The Hellman-Feynman and Pulay forces

- The Harris functional

$$
E[\rho]=\sum_{i} f_{i} \varepsilon_{i}-\frac{1}{2} \int \rho(\mathbf{r}) \nu_{H} d \mathbf{r}-\int \rho(\mathbf{r}) \nu_{x c} d \mathbf{r}+E_{x c}[\rho]+E_{N N}
$$

- The forces

$$
F=-\frac{\delta E[\rho(r ; R), R]}{\delta R}=q
$$

- Hellman-Feynman forces

$$
\stackrel{\epsilon_{i}=\left\langle\psi_{i}\right| \hat{h}_{K S}\left|\psi_{i}\right\rangle}{ } \quad F^{H F}=-\frac{\partial E_{N N}}{\partial R_{I}}-\int \rho_{K S}(\mathbf{r}) \frac{\partial \nu_{\text {ext }}}{\partial R_{I}} d \mathbf{r}
$$

The Hellman-Feynman and Pulay forces

- Pulay forces come from

$$
\sum_{i} f_{i} \delta \varepsilon_{i}=\sum_{i} f_{i}\left\langle\psi_{i}\right| \delta \hat{h}_{K S}\left|\psi_{i}\right\rangle+\sum_{i} f_{i}\left\langle\delta \psi_{i}\right| \hat{h}_{K S}\left|\psi_{i}\right\rangle+\sum_{i} f_{i}\left\langle\psi_{i}\right| \hat{h}_{K S}\left|\delta \psi_{i}\right\rangle
$$

- They would be zero in the complete basis set limit even for atom-centred basis sets

The Hellman-Feynman and Pulay forces

- Pulay forces come from

$$
\sum_{i} f_{i} \delta \varepsilon_{i}=\sum_{i} f_{i}\left\langle\psi_{i}\right| \delta \hat{h}_{K S}\left|\psi_{i}\right\rangle+\sum_{i} f_{i}\left\langle\delta \psi_{i}\right| \hat{h}_{K S}\left|\psi_{i}\right\rangle+\sum_{i} f_{i}\left\langle\psi_{i}\right| \hat{h}_{K S}\left|\delta \psi_{i}\right\rangle
$$

- They would be zero in the complete basis set limit even for atom-centred basis sets
- By using $\psi_{i}=\sum_{\mu} c_{\mu i} \varphi_{\mu}$ and $\sum_{\mu} c_{i \mu} h_{\mu \nu}=\epsilon_{i} \sum_{\mu} c_{i \mu} s_{\mu \nu}$, plus imposing $\delta\left\langle\psi_{i} \mid \psi_{i}\right\rangle=\delta\left(\sum_{\mu \nu} s_{\mu \nu} c_{i \mu}^{*} c_{i \nu}\right)=0$

$$
F_{c}^{P}=-2 \operatorname{Re}\left[\sum_{i \mu \nu} f_{i} c_{i \mu}^{*} c_{i \nu}\left\langle\frac{\partial \varphi_{\mu}}{\partial R}\right| \hat{h}_{K S}-\epsilon_{i}\left|\varphi_{\nu}\right\rangle\right]
$$

- "Beyond LDA" functionals and relativistic corrections add further terms to the Pulay forces. See Blum et al., CPC (2009)

Hartree potential non-self-consistent force correction

- Still not the whole story.The energy functional at a given m SCF step is actually

$$
E^{(m)}[\rho]=\sum_{i} f_{i}^{(m)} \varepsilon_{i}^{(m)}-\frac{1}{2} \int \underbrace{(m-1)}_{\text {Mixed density }}(\mathbf{r}) \nu_{H}^{(m-1)} d \mathbf{r}-\int \rho^{(m-1)}(\mathbf{r}) \nu_{x c}^{(m-1)} d \mathbf{r}+E_{x c}\left[\rho^{(m-1)}\right]+E_{N N}
$$

at step m-1

- After some math we get

$$
F^{N S C}=\int\left(\rho^{(m-1)}(\mathbf{r})-\rho_{K S}^{(m)}(\mathbf{r})\right) \frac{\delta \nu_{H}^{(m-1)}}{\delta R_{I}} d \mathbf{r}+\int\left(\rho^{(m-1)}(\mathbf{r})-\rho_{K S}^{(m)}(\mathbf{r})\right) \frac{\delta \nu_{x c}^{(m-1)}}{\delta R_{I}} d \mathbf{r}
$$

Hartree potential non-self-consistent force correction

- Still not the whole story.The energy functional at a given m SCF step is actually

$$
E^{(m)}[\rho]=\sum_{i} f_{i}^{(m)} \varepsilon_{i}^{(m)}-\frac{1}{2} \int \underbrace{(m-1)}_{\text {Mixed density }}(\mathbf{r}) \nu_{H}^{(m-1)} d \mathbf{r}-\int \rho^{(m-1)}(\mathbf{r}) \nu_{x c}^{(m-1)} d \mathbf{r}+E_{x c}\left[\rho^{(m-1)}\right]+E_{N N}
$$

at step m-1

- After some math we get

$$
F^{N S C}=\int\left(\rho^{(m-1)}(\mathbf{r})-\rho_{K S}^{(m)}(\mathbf{r})\right) \frac{\delta \nu_{H}^{(m-1)}}{\delta R_{I}} d \mathbf{r}+\int\left(\rho^{(m-1)}(\mathbf{r})-\rho_{K S}^{(m)}(\mathbf{r})\right) \frac{\delta \nu_{x c}^{(m-1)}}{\delta R_{I}} d \mathbf{r}
$$

Implemented in 2021 by Herzain Rivera \& Mariana Rossi

Need of accurate self-consistency

- Hamiltonian dynamics (microcanonical ensemble): Energy should be conserved!
- How close to self consistency do we need to be?

Need of accurate self-consistency

- Hamiltonian dynamics (microcanonical ensemble): Energy should be conserved!
- How close to self consistency do we need to be?

Hartree potential non-self-consistent force correction

- Impact of non-self-consistent force correction term from Hartree potential

Time step and the accuracy of integration

$\Delta t=3 \mathrm{fs}$

Time step and the accuracy of integration

$\Delta t=3 \mathrm{fs}$

Time step and the accuracy of integration

$$
\Delta \mathrm{t}=3 \mathrm{fs}
$$

- What is a good time step?
- Depends on the highest vibrational frequency (thus mass) of your system $(\omega \approx \sqrt{k / M})$
- Typically, choose a time step corresponding to $\sim I /\left(10 \omega_{\max }\right)$ (femtosecond time scale)

A bit about Car-Parrinello MD

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 247I-2474 (1985)

- Extended Lagrangian: add (fictitious) degrees of freedom for the electrons in the Lagrangian and solve coupled equations of motion

$$
\mathcal{L}=\frac{1}{2}\left[\sum_{I} M_{I} \dot{\mathbf{R}}_{I}^{2}+\mu \sum_{i} \int d \mathbf{r}\left|\dot{\phi}_{i}(\mathbf{r}, t)\right|^{2}\right]-V\left(\phi, \phi^{*} ; \mathbf{R}\right)+\underset{i f}{2} \lambda_{i j}\left[\int d \mathbf{r} \phi_{i}^{*}(\mathbf{r}, t) \phi_{j}(\mathbf{r}, t)-\delta_{i j}\right]
$$

A bit about Car-Parrinello MD

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 247I-2474 (1985)

- Extended Lagrangian: add (fictitious) degrees of freedom for the electrons in the Lagrangian and solve coupled equations of motion

$$
\mathcal{L}=\frac{1}{2}[\sum_{I} M_{I} \dot{\mathbf{R}}_{I}^{2}+\underbrace{\mu}_{\substack{\mu \\ \text { Fictitious } \\ \text { electron mass }}} \sum_{i} d \mathbf{r}\left|\dot{\phi}_{i}(\mathbf{r}, t)\right|^{2}]-V \underbrace{\phi_{i}, \phi^{*}}_{\substack{\text { Kohn-Sham } \\ \text { orbitals }}} \mathbf{R})+\underbrace{2 \lambda_{i j}}_{i j}\left[\int d \mathbf{r} \phi_{i}^{*}(\mathbf{r}, t) \phi_{j}(\mathbf{r}, t)-\delta_{i j}\right]
$$

A bit about Car-Parrinello MD

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 247I-2474 (1985)

- Extended Lagrangian: add (fictitious) degrees of freedom for the electrons in the Lagrangian and solve coupled equations of motion

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}\left[\sum_{I} M_{I} \dot{\mathbf{R}}_{I}^{2}+\underset{\substack{ \\
\text { Fictitious } \\
\text { electron mass }}}{\mu} \sum_{i} d \mathbf{r}\left|\dot{\phi}_{i}(\mathbf{r}, t)\right|^{2}\right]-V \underbrace{\left.\phi, \phi^{*}\right)}_{\substack{\text { Kohn-Sham } \\
\text { orbitals }}} \underset{2 \lambda_{i j}}{\substack{\text { Lagrange multipliers }}}\left[\int d \mathbf{r} \phi_{i}^{*}(\mathbf{r}, t) \phi_{j}(\mathbf{r}, t)-\delta_{i j}\right] \\
& M_{I} \ddot{\mathbf{R}}_{I}=-\nabla_{I} V\left(\phi, \phi^{*} ; \mathbf{R}\right) \\
& \ddot{\mu}_{i}=-\frac{1}{2} \frac{\delta V\left(\phi, \phi^{*} ; \mathbf{R}\right)}{\delta \phi_{i}^{*}}+\sum_{j} \phi_{j} \lambda_{j i}
\end{aligned}
$$

A bit about Car-Parrinello MD

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 247I-2474 (1985)

- Extended Lagrangian: add (fictitious) degrees of freedom for the electrons in the Lagrangian and solve coupled equations of motion

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}[\sum_{I} M_{I} \dot{\mathbf{R}}_{I}^{2}+\underbrace{\mu}_{\substack{\text { Fictitious } \\
\text { electron mass }}} \sum_{i} \int d \mathbf{r}\left|\dot{\phi}_{i}(\mathbf{r}, t)\right|^{2}]-V \underbrace{\phi_{i}, \phi^{*}}_{\substack{\text { Kohn-Sham } \\
\text { orbitals }}} \mathbf{R})+\lambda_{i j}^{2 \lambda_{i j}}\left[\int d \mathbf{r} \phi_{i}^{*}(\mathbf{r}, t) \phi_{j}(\mathbf{r}, t)-\delta_{i j}\right] \\
& M_{I} \ddot{\mathbf{R}}_{I}=-\nabla_{I} V\left(\phi, \phi^{*} ; \mathbf{R}\right) \\
& \mu \ddot{\phi}_{i}=-\frac{1}{2} \frac{\delta V\left(\phi, \phi^{*} ; \mathbf{R}\right)}{\delta \phi_{i}^{*}}+\sum_{j} \phi_{j} \lambda_{j i}
\end{aligned}
$$

- Adiabatic separation: fictitious mass of the electrons need to be very small \Rightarrow smaller time step
- Electrons "follow" nuclei - avoids self consistency calculation at every step

Other Acceleration Techniques

J. Kolafa JCC 25, 335 (2004);T. Kühne, et al. PRL 98, 06640 I (2007); Steneteg et al., PRB 82, 075 I 10 (20I0); Niklasson JCTC I6 (2020)

- Idea: Use a very good guess for the wave function of the "next step". Ensuring time-reversibility is key for stability of propagation.

Other Acceleration Techniques

J. Kolafa JCC 25, 335 (2004);T. Kühne, et al. PRL 98, 06640 I (2007); Steneteg et al., PRB 82, 075 I I 0 (20I0); Niklasson JCTC 16 (2020)

- Idea: Use a very good guess for the wave function of the "next step". Ensuring time-reversibility is key for stability of propagation.
- Naïve (and frequently used): Use converged electronic density from previous step
- More involved:
- Extrapolate electronic density (or flavors of the density matrix) based on information of previous time steps
- Formulate types of extended Lagrangian formalisms with auxiliary variables (density, wave functions) that move in a harmonic potential around the self-consistent solution

$$
\phi_{i}=\sum_{j} c_{i} \varphi_{\substack{ \\\text { Basis Sets }}}^{\mathbf{P}}=\mathbf{C}^{T} \mathbf{C}
$$

Other Acceleration Techniques

J. Kolafa JCC 25, 335 (2004);T. Kühne, et al. PRL 98, 06640 I (2007); Steneteg et al., PRB 82, 075 I I 0 (20I0); Niklasson JCTC 16 (2020)

- Idea: Use a very good guess for the wave function of the "next step". Ensuring time-reversibility is key for stability of propagation.
- Naïve (and frequently used): Use converged electronic density from previous step
- More involved:
- Extrapolate electronic density (or flavors of the density matrix) based on information of previous time steps
- Formulate types of extended Lagrangian formalisms with auxiliary variables (density, wave functions) that move in a harmonic potential around the self-consistent solution

$$
\phi_{i}=\sum_{j} c_{i} \varphi_{\text {Basis Sets }}^{\varphi_{j}} \quad \boldsymbol{\phi}=\mathbf{C} \varphi \quad \begin{gathered}
\mathbf{P} \\
\text { Density Matrix }
\end{gathered}
$$

- Some of these techniques have been implemented in FHI -aims with limited success. Ongoing efforts!

Temperature control: the canonical ensemble

- The idea: couple the system to a thermostat (heat bath)
- Interesting because:
- Experiments are usually done at constant temperature
- Better modeling of conformational changes

Nosé-Hoover thermostat

S. Nosé, J. Chem. Phys. 8I, 5 II (1984) \& W. G. Hoover, Phys. Rev.A 3I, 1695 (1985).

Extended Hamiltonian (or Lagrangian):

$$
\mathcal{H}_{N H}=\sum_{I} \frac{\mathbf{p}_{I}^{2}}{2 M_{I}}+V(\mathbf{R})+\frac{p_{\eta}^{2}}{2 Q}+3 N k_{B} T \eta
$$

Nosé-Hoover thermostat

S. Nosé, J. Chem. Phys. 8 I, 5 II (I984) \& W. G. Hoover, Phys. Rev.A 3 I, I695 (I985).

Extended Hamiltonian (or Lagrangian):

$$
\mathcal{H}_{N H}=\underbrace{\sum_{I} \frac{\mathbf{p}_{I}^{2}}{2 M_{I}}+V(\mathbf{R})}_{\text {Original system }}+\underbrace{\frac{p_{\eta}^{2}}{2 Q}+3 N k_{B} T \eta}_{\text {Fictitious Oscillator }}
$$

Nosé-Hoover thermostat

S. Nosé, J. Chem. Phys. 8 I, 5 II (I984) \& W. G. Hoover, Phys. Rev.A 3 I, I695 (I985).

Extended Hamiltonian (or Lagrangian):

$$
\mathcal{H}_{N H}=\underbrace{\sum_{I} \frac{\mathbf{p}_{I}^{2}}{2 M_{I}}+V(\mathbf{R})}_{\text {Original system }}+\underbrace{\frac{p_{\eta}^{2}}{2 Q}+3 N k_{B} T \eta}_{\text {Fictitious Oscillator }}
$$

- Momenta are damped by fictitious oscillator: $\dot{\mathbf{p}}_{I}=\mathbf{F}_{I}-\frac{p_{\eta}}{Q} \mathbf{p}_{I}$
S. Nosé, J. Chem. Phys. 8 I , 5 II (I984) \&W. G. Hoover, Phys. Rev.A 3 I, I695 (I985).

Extended Hamiltonian (or Lagrangian):

$$
\mathcal{H}_{N H}=\underbrace{\sum_{I} \frac{\mathbf{p}_{I}^{2}}{2 M_{I}}+V(\mathbf{R})}_{\text {Original system }}+\underbrace{\frac{p_{\eta}^{2}}{2 Q}+3 N k_{B} T \eta}_{\text {Fictitious Oscillator }}
$$

- Momenta are damped by fictitious oscillator: $\dot{\mathbf{p}}_{I}=\mathbf{F}_{I}-\frac{p_{\eta}}{Q} \mathbf{p}_{I}$
- Ergodicity problems - system may be stuck in a region of phase space
- Possible solution: Nosé-Hoover chains

Attach another fictitious oscillator to the first, and another to the second, and another to the third, ... (chain of fictitious oscillators)

How to model a thermostat: first ideas

- Temperature rescaling: Berendsen "thermostat"
- Rescale velocities by a factor containing the ratio of target and instant temperature
- Does not sample the canonical ensemble (wrong temperature distribution)
- "Flying ice-cube" effect: rotations and translations acquire high $E_{\text {kin }}$ and vibrations are frozen
H. J. C. Berendsen, et al. J. Chem. Phys. 8 I 3684 (1984)

How to model a thermostat: first ideas

- Temperature rescaling: Berendsen "thermostat"
- Rescale velocities by a factor containing the ratio of target and instant temperature
- Does not sample the canonical ensemble (wrong temperature distribution)
- "Flying ice-cube" effect: rotations and translations acquire high $E_{k i n}$ and vibrations are frozen

$$
\text { H. J. C. Berendsen, et al. J. Chem. Phys. } 8 \text { I } 3684 \text { (I984) }
$$

- Simple stochastic idea:Andersen thermostat
- At each $n^{\text {th }}$ time-step, replace velocity of a random particle by one drawn from a MaxwellBoltzmann distribution at target temperature
- Not very efficient, no conserved quantity
- Very sensitive on n

Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. I26, 014 IOI (2007).

Combine concepts from velocity rescaling (fast!) with concepts from stochastic thermostats (accurate!)

Target temperature follows a stochastic differential equation:

$$
\frac{d T}{\bar{T}}=\left[1-\frac{T(t)}{\bar{T}}\right] \frac{d t}{\tau}-2 \sqrt{\frac{T(t)}{3 \bar{T} N \tau}} \xi(t)
$$

Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. I26, 014101 (2007).

Combine concepts from velocity rescaling (fast!) with concepts from stochastic thermostats (accurate!)

Target temperature follows a stochastic differential equation:

$$
\frac{d T}{\bar{T}}=\underbrace{\left[1-\frac{T(t)}{\bar{T}}\right] \frac{d t}{\tau}}_{\substack{\text { Temperature } \\ \text { rescaling }}}-\underbrace{2 \sqrt{\frac{T(t)}{3 \bar{T} N \tau}} \xi(t)}_{\text {White noise }}
$$

Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. I26, 014101 (2007).

Combine concepts from velocity rescaling (fast!) with concepts from stochastic thermostats (accurate!)

Target temperature follows a stochastic differential equation:

$$
\frac{d T}{\bar{T}}=\underbrace{\left[1-\frac{T(t)}{\bar{T}}\right] \frac{d t}{\tau}}_{\substack{\text { Temperature } \\ \text { rescaling }}}-\underbrace{2 \sqrt{\frac{T(t)}{3 \bar{T} N \tau}} \xi(t)}_{\text {White noise }}
$$

- Very successful thermostat, weakly dependent on relaxation time T
- Pseudo-Hamiltonian is conserved

Langevin (stochastic) thermostat

S.A.Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (I976).

Model dynamics via the Langevin equation:

$$
M_{I} \ddot{\mathbf{R}}_{I}=\mathbf{F}_{I}-\gamma_{I} \dot{\mathbf{R}}_{I}+\xi(t)
$$

$$
\langle\xi(t) \xi(0)\rangle=2 k_{B} T \gamma \delta(t)
$$

Langevin (stochastic) thermostat

S.A.Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (I976).

Model dynamics via the Langevin equation:

$$
M_{I} \ddot{\mathbf{R}}_{I}=\mathbf{F}_{I}-\gamma_{I} \dot{\mathbf{R}}_{I}+\xi(t)
$$

Original system Friction and White Noise

$$
\langle\xi(t) \xi(0)\rangle=2 k_{B} T \gamma \delta(t)
$$

Langevin (stochastic) thermostat

S.A.Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (I976).

Model dynamics via the Langevin equation:

$$
\begin{aligned}
& M_{\text {Original system }}^{M_{I} \ddot{\mathbf{R}}_{I}=\mathbf{F}_{I}}-\underbrace{\gamma_{I} \dot{\mathbf{R}}_{I}+\xi(t)}_{\text {Friction and White Noise }} \\
& \quad\langle\xi(t) \xi(0)\rangle=2 k_{B} T \gamma \delta(t)
\end{aligned}
$$

- Sensitive on γ
- For systems spanning a wide range of frequencies, how to achieve the "best" critical damping?
- Disturbs dynamics considerably

Colored noise thermostats

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010, 6, II70-II80 (http://gle4md.org/index.htmI)

Extremely flexible class of thermostats based on the Generalized Langevin Equation (GLE)

- Markovian (no memory) process in high dimensions

$$
\binom{\dot{p}}{\dot{\mathbf{s}}}=\binom{-V^{\prime}(R)}{0}-\mathbf{A}_{p}\binom{p}{\mathbf{s}}+\mathbf{B}_{p}(\boldsymbol{\xi})
$$

Colored noise thermostats

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010,6 , II70-II80 (http://gle4md.org/index.html)

Extremely flexible class of thermostats based on the Generalized Langevin Equation (GLE)

- Markovian (no memory) process in high dimensions

fictitious degrees
of freedom

Colored noise thermostats

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010,6 , II70-II80 (http://gle4md.org/index.html)

Extremely flexible class of thermostats based on the Generalized Langevin Equation (GLE)

- Markovian (no memory) process in high dimensions

fictitious degrees
of freedom
- Non-Markovian process for the system (integrating out s):

$$
\dot{p}=F-\int_{-\infty}^{t} d \tau K(t-\tau) p(\tau)+\boldsymbol{\zeta}(t)
$$

Colored noise thermostats

M. Ceriotti, G. Bussi, M. Parrinello, JCTC 2010,6 , II70-II80 (http://gle4md.org/index.html)

Extremely flexible class of thermostats based on the Generalized Langevin Equation (GLE)

- Markovian (no memory) process in high dimensions

- Non-Markovian process for the system (integrating out s):

$$
\dot{p}=F-\int_{-\infty}^{t} d \underset{\text { Memory Kernel }}{-K(t-\tau) p(\tau)+\underbrace{\zeta(t)}_{\text {Colored Noise }}}
$$

Fluctuation Dissipation: $H(t)=\langle\zeta(t) \zeta(0)\rangle=k_{B} T K(t)$

Pressure control: Isobaric-isothermic ensemble

- Definition of instantaneous pressure:

$$
P_{\alpha \beta}^{(\text {int })}=-\frac{1}{\operatorname{det}(\boldsymbol{h})} \sum_{\gamma=1}^{3} \frac{\partial E[\{\psi\}, \mathbf{R}]}{\partial h_{\alpha \gamma}} h_{\text {Stress Tensor }} h_{\beta \gamma}+P_{\alpha \beta}^{\mathrm{T}}
$$

Pressure control: Isobaric-isothermic ensemble

- Definition of instantaneous pressure:

$$
\begin{aligned}
& \text { us pressure: } \\
& P_{\alpha \beta}^{(\mathrm{int})}=-\frac{1}{\operatorname{det}(\boldsymbol{h})} \sum_{\gamma=1}^{3} \frac{\partial E[\{\psi\}, \mathbf{R}]}{\partial h_{\alpha \gamma}} h_{\text {Stress Tensor }} h_{\beta \gamma}+P_{\alpha \beta}^{\mathrm{T}}
\end{aligned}
$$

- Similar schemes as thermostats: pressure rescaling, extended Lagrangian, stochastic pressure rescaling
Parinello and Rahman, J.Appl. Phys 52, 7182 (I98I);
Bussi, Zykova-Timan, Parrinello, J. Chem. Phys. I30, 074IOI (2009)

Pressure control: Isobaric-isothermic ensemble

- Definition of instantaneous pressure:

$$
\begin{aligned}
& \text { us pressure: } \\
& \qquad P_{\alpha \beta}^{(\text {int })}=-\frac{1}{\operatorname{det}(\boldsymbol{h})} \sum_{\gamma=1}^{3} \frac{\partial E[\{\psi\}, \mathbf{R}]}{\partial h_{\alpha \gamma}} h_{\substack{\text { Stress Tensor }}}^{h_{\beta \gamma}+P_{\alpha \beta}^{\mathrm{T}}} .
\end{aligned}
$$

- Similar schemes as thermostats: pressure rescaling, extended Lagrangian, stochastic pressure rescaling
Parinello and Rahman, J.Appl. Phys 52, 7182 (I98I);
Bussi, Zykova-Timan, Parrinello, J. Chem. Phys. I30, 074IOI (2009)
- Use thermostat together with a barostat to control pressure and temperature

The i-PI wrapper code: sockets interface

- The i-PI code is a python interface for the calculation of (path integral ab initio) molecular dynamics
- i-PI communicates with the electronic structure codes through internet (or UNIX) sockets, making it extremely flexible
- Interfaced to many electronic structure codes (check our webpage!)

The i-PI wrapper code: sockets interface

- The i-Pl code is a python interface for the calculation of (path integral ab initio) molecular dynamics
- i-Pl communicates with the electronic structure codes through internet (or UNIX) sockets, making it extremely flexible
- Interfaced to many electronic structure codes (check our webpage!)

The i-PI wrapper code: sockets interface

The i-PI wrapper code: sockets interface

Communication in HPC systems

- The point of using sockets is to enable remote execution - server must talk to client
- In HPC systems it might not be trivial
a)

Iinternal network

Communication in HPC systems

- The point of using sockets is to enable remote execution - server must talk to client
- In HPC systems it might not be trivial

Communication in HPC systems

- The point of using sockets is to enable remote execution - server must talk to client
- In HPC systems it might not be trivial

Molecular Crystals: Free Energy Differences

Force Field

Molecular Crystals: Free Energy Differences

The Fully Quantum Free Energy Differences

$\Delta=\left(E_{\text {cryst }} / N\right)-E_{\text {mol }}$

The Fully Quantum Free Energy Differences

$\Delta=\left(E_{\text {cryst }} / N\right)-E_{\text {mol }}$

$\Delta \Delta=\Delta f l-\Delta f l \mid$

MMFF: Halgren, JCC 17, 490 (1996)
D3: Grimme, et al.JCP I32, I54104 (20I0)

References for AIMD and PIMD (books)

Understanding Molecular Simulation: From Algorithms to Applications D. Frenkel and B. Smith

Statistical Mechanics:Theory and Molecular Simulation

M.Tuckerman
$A b$ initio molecular dynamics:Theory and Implementation Dominik Marx and Jurg Hutter

Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms
edited by J. Grotendorst, D. Marx, and M.Alejandro
Quantum Mechanics and Path Integrals
R. P. Feynman, A. R. Hibbs

References for AIMD and PIMD (books)

Understanding Molecular Simulation: From Algorithms to Applications D. Frenkel and B. Smith

Statistical Mechanics:Theory and Molecular Simulation
 M.Tuckerman

$A b$ initio molecular dynamics:Theory and Implementation Dominik Marx and Jurg Hutter

Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms
edited by J. Grotendorst, D. Marx, and M.Alejandro
Quantum Mechanics and Path Integrals
R. P. Feynman, A. R. Hibbs

$$
\nabla
$$

