FHI-aims Tutorial Series 2021

Ab initio thermodynamics: Replica-Exchange Grand-Canonical Method

Yuanyuan Zhou (周院院)

DTU Copenhagen, Denmark

1

The problem to be addressed

Ab initio thermodynamics:

- Ab initio atomistic thermodynamics (aiAT)
- Replica-Exchange Grand-Canonical method (REGC)
- Computational hydrogen electrode (CHE)

Thermodynamics

Bridge between microscopic and macroscopic

 $S = k_B \ln \Omega$ $\Omega : \text{Number of microstates}$ in a given macrostate Ω This is only a postulate but it works: $\Omega \to \max, S \to \max$

2> Ω is multiplicative, S is additive

Bridge between microscopic and macroscopic

$$P(E) = \rho(E)dE = \frac{dE}{Z}\Omega(E)e^{-\beta E} = \frac{dE}{Z}e^{-\beta E + \ln\Omega}$$
$$= \frac{dE}{Z}e^{-\beta(E-TS)} = \frac{dE}{Z}e^{-\beta F(E)}$$

$$\frac{P(E1)}{P(E2)} = e^{-\beta \left[F(E1) - F(E2)\right]}$$

5

$$\begin{split} Z &= \frac{1}{N!} z^{N} \qquad z = z^{\mathrm{trans}} z^{\mathrm{rot}} z^{\mathrm{vib}} z^{\mathrm{el}} z^{\mathrm{conf}} z^{\mathrm{nucl}} \\ \text{Translational:} \qquad z^{\mathrm{trans}} &= \left(\frac{2\pi m k_{B}T}{h^{2}}\right)^{\frac{3}{2}} V \qquad \text{Particle mass} \\ \text{Rotational:} \qquad z^{\mathrm{rot}} &= 8\pi^{2} \left(\frac{2\pi k_{B}T}{h^{2}}\right)^{\frac{3}{2}} (I_{A}I_{B}I_{C})^{\frac{1}{2}} \text{Non-linear molecules} \\ \text{Rotational inertia of a} \qquad z^{\mathrm{rot}} &= \frac{8\pi^{2}I_{A}k_{B}T}{h^{2}} \qquad \text{linear molecules} \\ \text{Vibrational:} \qquad z^{\mathrm{vib}} &= \prod \left[e^{-\frac{hv_{i}}{2k_{B}T}} \left(1 - e^{-\frac{hv_{i}}{2k_{B}T}}\right)^{-1} \right] \\ \text{Vibrational frequencies} \\ \text{Harmonic oscillator} \end{split}$$

Electronic:

$$z^{\rm el} = \sum (2s_i + 1)e^{-\frac{E_i}{k_B T}} \approx (2s_0 + 1)e^{-\frac{E_0}{k_B T}}$$

Conformational:

$$z^{
m conf}=rac{1}{\sigma}$$

Symmetry number

Polyatomic moleculesDiatomic molecules $\sigma = N$ $\sigma = 1$ heteroatomicSymmetry operations $\sigma = 2$ homoatomic

Nulei:

In most practical cases, we can neglect the interaction between nuclear spins

$$\mu(T,p) = \left(\frac{\partial G}{N}\right)_{T,p} = \frac{\partial}{\partial N} \left(-k_B T \ln Z + pV\right)_{T,p}$$
$$\mu(T,p) = -k_B T \ln\left[\left(\frac{2\pi m}{h^2}\right)^{\frac{3}{2}} (k_B T)^{\frac{5}{2}}\right] + k_B T \ln p$$
$$-k_B T \ln\left(\frac{8\pi^2 I_A k_B T}{\sigma h^2}\right) - k_{k_B} T \ln(2s_0 + 1)$$
$$+ E^{\text{DFT}} + \frac{hv}{2} + k_B T \ln\left(1 - e^{-\frac{hv}{k_B T}}\right)$$

Relation between *T*, *p* and μ

$$pV = Nk_BT$$

8

$$\mu(T,p) = -k_{\rm B}T \ln\left[\left(\frac{2\pi m}{h^2}\right)^{\frac{3}{2}} (k_{\rm B}T)^{\frac{5}{2}}\right] + k_{\rm B}T \ln p$$
$$-k_{\rm B}T \ln\left(\frac{8\pi^2 I_{\rm A}k_{\rm B}T}{\sigma h^2}\right) - k_{\rm k_{\rm B}}T \ln(2s_0 + 1) \qquad \Delta\mu(T,p)$$
$$+ E^{\rm DFT} + \frac{hv}{2} + k_{\rm B}T \ln\left(1 - e^{-\frac{hv}{k_{\rm B}T}}\right)$$

JANAF Thermochemical tables, D.R. Stull, H. Prophet. US National Bureau of Standards, Washington DC, 1971

The Gibbs free energy of adsorption

 $\Delta G^{\mathrm{ad}}(T, p_{\mathrm{O}_2}) = G^{\mathrm{surf}} - G^{\mathrm{clean}} - N\mu_{\mathrm{O}}(T, p_{\mathrm{O}_2})$

[1] Statistical Mechanics, D. A. McQuarrie, (2000)[2] Weinert and Scheffler, Mater. Sci. Forum 25 (1986)[3] Reuter and Scheffler Phys. Rev. B 65 (2001)

 $\mu_{O_2}(T, p_{O_2})$ isothermal-isobaric ensemble (*NpT*)

The Gibbs free energy of adsorption

 $\Delta G^{\rm ad}(T,p_{\rm O_2}) = G^{\rm surf} - G^{\rm clean} - N\mu_{\rm O}(T,p_{\rm O_2})$ From partition function Q

Gibbs free energy $G(T,p) = -k_{\rm B}T\ln Q + pV$ For ideal gas

$$Q = \frac{1}{N!} q^{N} \qquad q = q^{\text{trans}} q^{\text{rot}} q^{\text{vib}} q^{\text{el}} q^{\text{conf}} q^{\text{vic}}$$

[1] Statistical Mechanics, D. A. McQuarrie, (2000)
[2] Weinert and Scheffler, Mater. Sci. Forum 25 (1986)
[3] Reuter and Scheffler Phys. Rev. B 65 (2001)

[1] Statistical Mechanics, D. A. McQuarrie, (2000)
[2] Weinert and Scheffler, Mater. Sci. Forum 25 (1986)
[3] Reuter and Scheffler Phys. Rev. B 65 (2001)

An unbiased sampling of the configurational and compositional space

[1] Statistical Mechanics, D. A. McQuarrie, (2000)

[2] Weinert and Scheffler, Mater. Sci. Forum 25 (1986)

[3] Reuter and Scheffler Phys. Rev. B 65 (2001)

An effective sampling in phase space

Slow-diffusion issues

- ✓ Generation of possible defects by atoms' insertion or removal
- $\checkmark\,$ Circumventing dissociation barrier
- ✓ Straightforward extension to multi-component systems

- $\checkmark\,$ Generation of possible defects by atoms' insertion or removal
- $\checkmark\,$ Circumventing dissociation barrier
- ✓ Straightforward extension to multi-component systems

Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Academic Press: San Diego, 2002.

- Numerous minima
- Large free-energy barriers

\checkmark	Adding bias to Hamiltonian:	
	metadynamics umbrella samling accelerated molecular dynamics	<pre>} appropriate collective variables convergence criterion</pre>

 ✓ A generalized ensemble: simulated tempering multicanonical sampling ∫ weight factor parallel tempering (replica exchange) → Known weight factor

- Numerous minima
- Large free-energy barriers

Low T: thoroughly sampling in the local minimas

High T: jumpimg between minimas (basins)

Partition function of extended NVT ensembles $Q_{\text{extended canonical}} = \prod_{l=1}^{L} \frac{1}{\Lambda_l^{3N} N!} \int d\mathbf{R} \, e^{-\beta_l E(\mathbf{R};N)}$ $P_{[\beta_i \to \beta_j]} = \min \left[1, e^{[-(\beta_j - \beta_i)(E(\mathbf{R}_i) - E(\mathbf{R}_j)]} \right]$

- ✓ Statistical average over adsorption/desorption processes
- ✓ Generation of possible defects by atoms' insertion or removal
- ✓ Circumventing dissociation barrier
- ✓ Kinetic barrier
- ✓ Straightforward extension to multi-component systems
- ✓ REGC coupled with molecular dynamics or monte carlo

- ✓ Statistical average over adsorption/desorption processes
- ✓ Generation of possible defects by atoms' insertion or removal
- ✓ Circumventing dissociation barrier
- ✓ Kinetic barrier
- ✓ Straightforward extension to multi-component systems
- ✓ REGC coupled with molecular dynamics or monte carlo

- ✓ Statistical average over adsorption/desorption processes
- \checkmark Generation of possible defects by atoms' insertion or removal
- ✓ Circumventing dissociation barrier
- ✓ Kinetic barrier
- ✓ Straightforward extension to multi-component systems
- ✓ REGC coupled with molecular dynamics or monte carlo

2D schematic of REGC

- ✓ Statistical average over adsorption/desorption processes
- \checkmark Generation of possible defects by atoms' insertion or removal
- ✓ Circumventing dissociation barrier
- ✓ Kinetic barrier
- ✓ Straightforward extension to multi-component systems
- ✓ **REGC coupled with molecular dynamics or monte carlo**

2D schematic of REGC

Partition function of extended µVT ensembles

$$Q_{ ext{extended}} = \prod_{l=1}^{L} \prod_{m=1}^{M} rac{e^{eta_l \mu_m N_{l,m}} V^{N_{l,m}}}{\Lambda_l^{3N_{l,m}} N_{l,m}!} \int doldsymbol{R} \, e^{-eta_l Eig(oldsymbol{R}; N_{l,m}ig)}$$

$$P_{[(\beta_{l},\mu_{m},\mathbf{R}_{i})(\beta_{k},\mu_{o},\mathbf{R}_{j})\to(\beta_{l},\mu_{m},\mathbf{R}_{j})(\beta_{k},\mu_{o},\mathbf{R}_{i})]} = \min\left[1,\left(\frac{\beta_{l}}{\beta_{k}}\right)^{\frac{3}{2}(N_{l,m}-N_{k,o})}\times e^{[-(\beta_{l}-\beta_{k})(E(\mathbf{R}_{j})-E(\mathbf{R}_{i})+(\beta_{l}\mu_{m}-\beta_{k}\mu_{o})(N_{l,m}-N_{k,o})]}\right]$$

21

Replica-Exchange Grand-Canonical Scheme

22

Scalability of REGC with FHI-aims

This was performed on 10 240 cores (160 core for the MD run of every replica)

Free energy from probabilities: a posteriori

Free energy from probabilities: a posteriori

Grand-canonical density function $q(\mathbf{R}; \mu, \beta) = \exp[-U(\mathbf{R}; \mu, \beta)]$

Multistate Bennett acceptance ratio (MBAR) approach estimates $c(\mu, \beta)$

$$\hat{c}_{l,m} = \sum_{i=1}^{\Omega_{l,m}} \frac{q(\boldsymbol{R}_{i,l,m}; \mu_m, \beta_l)}{\sum_{l=1}^{L} \sum_{m=1}^{M} \Omega_{l,m} \hat{c}_{l,m}^{-1} q(\boldsymbol{R}_{i,l,m}; \mu_m, \beta_l)}$$

L × *M* thermodynamic states in REGC simulation

$$\langle A(\boldsymbol{R}) \rangle_{\mu,\beta,i} = \sum_{n=1}^{\Omega_i} \frac{A(\boldsymbol{R}_n) c_{\mu,\beta}^{-1} q(\boldsymbol{R}_n;\mu,\beta)}{\sum_{l,m} \Omega_{l,m,i} c_{\mu_m,\beta_l}^{-1} q(\boldsymbol{R}_{l,m,i};\mu_m,\beta_l)}$$
 in the MBAR formalism

Zhou, Scheffler and Ghiringhelli, Phys. Rev. B 100, (2019) https://gitlab.com/zhouyuanyuan/fhi-panda Shirts and Chodera, J. Chem. Phys. 12 (2008)

Free energy from probabilities: a posteriori

Free energy
$$F_i(\mu, T) = -k_{\rm B}T \ln P_i(\mu, T)$$
 probability
 $= -k_{\rm B}T \ln \frac{\int_{\Gamma} d\mathbf{R} \chi_i(\mathbf{R}) q(\mathbf{R}; \mu, \beta)}{\int_{\Gamma} d\mathbf{R} q(\mathbf{R}; \mu, \beta)}$
Ensemble average $\langle A(\mathbf{R}) \rangle_{\mu,\beta,i} = \frac{\int_{\Gamma} d\mathbf{R} \chi_i(\mathbf{R}) A(\mathbf{R}) q(\mathbf{R}; \mu, \beta)}{\int_{\Gamma} d\mathbf{R} q(\mathbf{R}; \mu, \beta)} \stackrel{?}{=} \frac{\sum A_i e^{-\beta U_i}}{\sum e^{-\beta U_i}} = \sum_i A_i P_i$
Reduced potential function for the GC ensemble $U(\mathbf{R}; \mu, \beta) = v(\mathbf{R}) - \mu N(\mathbf{R})$]
Grand-canonical density function $q(\mathbf{R}; \mu, \beta) = \exp[-U(\mathbf{R}; \mu, \beta)]$
Ergodic hypothesis: ensemble average

equal to time average

$$\langle E \rangle = \frac{\sum_{i} E(\mathbf{R}_{i}; \mu, \beta) e^{-\beta U(\mathbf{R}_{i}; \mu, \beta)}}{c(\mu, \beta)}$$

$$NC_{v} = \frac{\partial \langle E \rangle}{\partial T} = -\frac{1}{k_{B}T^{2}} \frac{\partial E}{\partial \beta} = -\frac{1}{k_{B}T^{2}} \frac{\partial}{\partial \beta} \left(\frac{\sum_{i} E_{i} e^{-\beta U_{i}}}{c(\mu, \beta)} \right)$$

$$= -\frac{1}{k_{B}T^{2}} \left[\frac{\left(\sum_{i} E_{i} e^{-\beta U_{i}}\right)^{2}}{c^{2}(\mu, \beta)} - \frac{\sum_{i} E_{i}^{2} e^{-\beta U_{i}}}{c(\mu, \beta)} \right]$$

$$= \frac{1}{k_{B}T^{2}} \left(\langle E^{2} \rangle - \langle E \rangle^{2} \right)$$

Zhou, Scheffler and Ghiringhelli, Phys. Rev. B 100, (2019) https://gitlab.com/zhouyuanyuan/fhi-panda Shirts and Chodera, J. Chem. Phys. 12 (2008)

Proof of concept: Two-component Lennard-Jones surface

Application: Si(100) surface in contact with D_2 reactive atmosphere at *ab initio* level

REGC: 10 temperatures and 16 chemical potentials

REGC+ MBAR

REGC(minimum-energy-structures) +aiAT

 $\mu(p,T) = k_{\rm B}T \ln(p/p_0)$

 $\mu(p,T) = k_{\rm B}T \ln(p/p_0)$

REGC+ MBAR

Zhou, Scheffler and Ghiringheli, Phys. Rev. B 100, (2019)

Si(100) surface in contact with D₂ reactive atmosphere at *ab initio* level

[8] Zhou, et al., unpublished

$$C_{v, (T, p_{H_2})} = \frac{\langle E^2 \rangle_{(T, p_{H_2})} - \langle E \rangle_{(T, p_{H_2})}^2}{k_B T^2} \qquad \langle E \rangle_{\mu, \beta} = \sum_{n=1}^{\Omega} \frac{E(\mathbf{R}_n) c_{\mu, \beta}^{-1} q(\mathbf{R}_n; \mu, \beta)}{\sum_{l, m} \Omega_{l, m} c_{\mu_m, \beta_l}^{-1} q(\mathbf{R}_{l, m}; \mu_m, \beta_l)}$$
in MBAR formalism

Every 1 K and 0.01 eV interval

$$C_{v, (T, p_{H_2})} = \frac{\langle E^2 \rangle_{(T, p_{H_2})} - \langle E \rangle_{(T, p_{H_2})}^2}{k_B T^2} \qquad \langle E \rangle_{\mu, \beta} = \sum_{n=1}^{\Omega} \frac{E(\mathbf{R}_n) c_{\mu, \beta}^{-1} q(\mathbf{R}_n; \mu, \beta)}{\sum_{l, m} \Omega_{l, m} c_{\mu_m, \beta_l}^{-1} q(\mathbf{R}_{l, m}; \mu_m, \beta_l)}$$
in MBAR formalism

Every 1 K and 0.01 eV interval

$$C_{v,(T, p_{\rm H_2})} = \frac{\langle E^2 \rangle_{(T, p_{\rm H_2})} - \langle E \rangle_{(T, p_{\rm H_2})}^2}{k_B T^2}$$

$$\langle E \rangle_{\mu,\beta} = \sum_{n=1}^{\Omega} \frac{E(\mathbf{R}_n) c_{\mu,\beta}^{-1} q(\mathbf{R}_n; \mu, \beta)}{\sum_{l,m} \Omega_{l,m} c_{\mu_m,\beta_l}^{-1} q(\mathbf{R}_{l,m}; \mu_m, \beta_l)}$$

in MBAR formalism

$$F_i(\mu, T) = -k_{\rm B}T \ln P_i(\mu, T)$$
$$= -k_{\rm B}T \ln \frac{\int_{\Gamma} d\mathbf{R} \chi_i(\mathbf{R}) q(\mathbf{R}; \mu, \beta)}{\int_{\Gamma} d\mathbf{R} q(\mathbf{R}; \mu, \beta)}$$

$$\chi_i(oldsymbol{R})~$$
 : number of chemisorbed D (N_D)

$$C_{v, (T, p_{H_2})} = \frac{\langle E^2 \rangle_{(T, p_{H_2})} - \langle E \rangle_{(T, p_{H_2})}^2}{k_B T^2} \qquad \langle E \rangle_{\mu,\beta} = \sum_{n=1}^{\Omega} \frac{E(\mathbf{R}_n) c_{\mu,\beta}^{-1} q(\mathbf{R}_n; \mu, \beta)}{\sum_{l,m} \Omega_{l,m} c_{\mu,m,\betal}^{-1} q(\mathbf{R}_{l,m}; \mu_m, \beta_l)}$$

in MBAR formalism

$$F_i(\mu, T) = -k_B T \ln P_i(\mu, T)$$

$$= -k_B T \ln \frac{\int_{\Gamma} d\mathbf{R} \chi_i(\mathbf{R}) q(\mathbf{R}; \mu, \beta)}{\int_{\Gamma} d\mathbf{R} q(\mathbf{R}; \mu, \beta)} \qquad \chi_i(\mathbf{R}) : \text{number of chemisorbed D } (N_D)$$

$$\int_{0}^{10} \frac{10}{10^{-10}} \frac{10}{10^{-10}} \frac{10}{10^{-10}} \frac{10^{-10}}{10^{-10}} \frac{10^{-1$$

$$C_{v, (T, p_{H_2})} = \frac{\langle E^2 \rangle_{(T, p_{H_2})} - \langle E \rangle_{(T, p_{H_2})}^2}{k_B T^2} \qquad \langle E \rangle_{\mu,\beta} = \sum_{n=1}^{\Omega} \frac{E(\mathbf{R}_n) c_{\mu,\beta}^{-1} q(\mathbf{R}_n; \mu, \beta)}{\sum_{l,m} \Omega_{l,m} c_{\mu,n,\betal}^{-1} q(\mathbf{R}_{l,m}; \mu_m, \beta_l)}$$

in MBAR formalism

$$F_i(\mu, T) = -k_B T \ln P_i(\mu, T)$$

$$= -k_B T \ln \frac{\int_{\Gamma} d\mathbf{R} \chi_i(\mathbf{R}) q(\mathbf{R}; \mu, \beta)}{\int_{\Gamma} d\mathbf{R} q(\mathbf{R}; \mu, \beta)} \qquad \chi_i(\mathbf{R}) : \text{number of chemisorbed D } (N_D)$$

$$\int_{0}^{29} \frac{10^{9}}{10^{10}} \frac{10^{9}}{10^{10}} \frac{10^{10}}{10^{10}} \frac{$$

Number of chemisorbed hydrogen (N_D)

Structural descriptors

Dimer type (κ_{dimer})

Si(100)-(4×4) surface in contact with D₂ reactive atmosphere at *ab initio* level

Si(100)-(3×3) surface in contact with D₂ reactive atmosphere at *ab initio* level

 $N_{\rm D} = 12$ 380 K

Y. J. Chabal and K. Raghavachari, Phys. Rev. Lett 100, 1055 (1985)

Si(100) surface in contact with D₂ reactive atmosphere at *ab initio* level

Si(100) surface in contact with D₂ reactive atmosphere at *ab initio* level

Adsorbed D slow the dynamics of dimer bonds

Anharmonic contributions: dynamical restructuring of Si-Si dimers

Computational hydrogen electrode model

$$\Delta G_{\rm ads} = \Delta E_{\rm ads} + \Delta E_{\rm ZPE} - T\Delta S$$

Chemical potential of $H_2 \rightarrow 2(H^+ + e^-)$ is half of H_2 when SHE is the reference potential

 $\Delta G_{\mathrm{II}} = eU$ A bias effect of electron in the electrode

 $\Delta G_{\rm pH} = -k_BT\ln[{\rm H^+}] = -k_BT\ln10 \times pH$ pH effect

Solvent and dipole effect is neglected

$$\Delta G = \Delta E_{\rm ads} + \Delta E_{\rm ZPE} - T\Delta S - n \left(0.5 G_{\rm H_2} - \Delta G_{\rm U} + \Delta G_{\rm pH} \right)$$

In an acid environment, O₂ reduction the associative mechanism

Elementary steps

 $O_2(g) + \ast \to O_2^\ast$

 $\mathrm{O}_2^* + \mathrm{H}^+ + \mathrm{e}^- \to \mathrm{HOO}^*$

 $HOO^* + H^+ + e^- \rightarrow O^* + H_2O(I)$

 $\mathrm{O}^* + \mathrm{H}^+ + \mathrm{e}^- \to \mathrm{HO}^*$

 $HO^* + H^+ + e^- \rightarrow H_2O(I) + \ast$

Computational hydrogen electrode model

$$\Delta G_{\rm ads} = \Delta E_{\rm ads} + \Delta E_{\rm ZPE} - T\Delta S$$

Chemical potential of $H_2 \rightarrow 2(H^+ + e^-)$ is half of H_2 when SHE is the reference potential

 $\Delta G_{\mathrm{U}} = e U$ A bias effect of electron in the electrode

 $\Delta G_{\rm pH} = -k_BT\ln[{\rm H^+}] = -k_BT\ln10\times pH \quad {\rm pH~effect}$

Solvent and dipole effect is neglected

$$\Delta G = \Delta E_{\rm ads} + \Delta E_{\rm ZPE} - T\Delta S - n \left(0.5 G_{\rm H_2} - \Delta G_{\rm U} + \Delta G_{\rm pH} \right)$$

In an acid environment, O_2 reduction the associative mechanism Elementary steps

Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard and Jonsson J. Phys, Chem, B. 108, 17886, (2004)

The Replica-Exchange Grand-Canonical *ab initio* Molecular Dynamics method:

to address surface composition and geometry at catalytic (T, p) conditions.

to quantitatively determine *ab initio* phase boundaries.

to calculate *T*-*p* dependence of any (atom position dependent) observable.

- X Fixed volume
- X Insertion directly into the lattice (lattice expansion/change)
- X Kinetics of reactions: combined with methods e.g., Markov state models

Reference

Books: Statistical Mechanics, D. A. McQuarrie, University Science Books, 2000

Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Academic Press: San Diego, 2002.

Ab initio atomitic thermodynamics method:

Reuter and Scheffler, Phys. Rev. B 65, 035406 (2001)

Rogal and Reuter, Ab initio atomistic thermodynamics for surfaces: A primer. (2005)

The Replica-Exchange Grand-Canonical *ab initio* Molecular Dynamics method:

Zhou, Scheffler and Ghiringhelli, Phys. Rev. B 100, (2019)

Zhou. Surface phase diagrams including anharmonic effects vi a replica-exchange grand-canonical method. Doctoral thesis, Technische Universit at Berlin, Berlin, 2020.

Computational hydrogen electrode

Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard and Jonsson J. Phys, Chem, B. 108, 17886, (2004)

Acknowledgments

Special thanks to:

Matthias Scheffler

Luca M. Ghiringhelli

Colleagues for insightful discussions

Jens K. Nørskov

CAT-THEORY Catalysis Theory Center DTU

Organizers

Thank you for attention!