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This talk is about ...
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Applying Kohn-Sham density-functional theory (KS-DFT) to large systems

Nanostructure Defect Interface



The “cubic wall” in Kohn-Sham density-functional theory
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Cu2BaSnS4

Key computational steps in KS-DFT
(with semi-local exchange-correlation functionals)

• Integrate KS Hamiltonian
• Diagonalize KS Hamiltonian (eigensolver)
• Compute electron density
• Evaluate potential from density

FHI-aims
PBE (GGA, semi-local) functional

2,560 CPU cores
Cori-Haswell supercomputer
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The “cubic wall” in Kohn-Sham density-functional theory
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Cu2BaSnS4

Key computational steps in KS-DFT
(with semi-local exchange-correlation functionals)

• Integrate KS Hamiltonian
• Diagonalize KS Hamiltonian (eigensolver)
• Compute electron density
• Evaluate potential from density

Computational cost of a dense eigensolver scales as O(N3)
with respect to the system size N

The other steps can be formulated as O(N)
(previous talk by Dr. Ville Havu)

How to speed up the diagonalization step?

FHI-aims
PBE (GGA, semi-local) functional

2,560 CPU cores
Cori-Haswell supercomputer
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Supercomputer “Cori”
(world’s no. 30)

2,388 Intel Haswell CPU nodes
9,688 Intel Knights Landing CPU nodes
27.8 PFLOP/s

https://www.nersc.gov/cori
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High-performance computers

1 PFLOP/s = 1015 floating point operations per second

https://www.nersc.gov/cori


Supercomputer “Summit”
(world’s no. 2)

4,608 nodes
6 NVIDIA V100 GPUs per node
200 PFLOP/s

http://www.olcf.ornl.gov/olcf-resources/compute-systems/summit
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(world’s no. 30)

2,388 Intel Haswell CPU nodes
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https://www.nersc.gov/cori
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High-performance computers

1 PFLOP/s = 1015 floating point operations per second

Run FHI-aims in parallel:  mpirun -n 1000 aims.scalapack.mpi.x

http://www.olcf.ornl.gov/olcf-resources/compute-systems/summit
https://www.nersc.gov/cori


ELPA, a massively parallel eigensolver



Full matrix A Tridiagonal matrix T

Massively parallel eigensolver ELPA

Auckenthaler et al., Parallel Comput. 37 (2011), 783-794
Marek et al., J. Phys. Condens. Matter 26 (2014), 213201

One-stage diagonalization (textbook)
1) Full matrix A à tridiagonal matrix T
2) Solve tridiagonal matrix T
3) Tridiagonal eigenvectors à full

Mostly matrix-vector multiplications in step1
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Full matrix A Banded matrix B Tridiagonal matrix T

Two-stage diagonalization
1) Full matrix A à banded matrix B
2) Banded matrix B à tridiagonal matrix T
3) Solve tridiagonal T
4) Tridiagonal eigenvectors à banded
5) Banded eigenvectors à full

More matrix-matrix operations in step1

One-stage diagonalization (textbook)
1) Full matrix A à tridiagonal matrix T
2) Solve tridiagonal matrix T
3) Tridiagonal eigenvectors à full

Mostly matrix-vector multiplications in step1
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Massively parallel eigensolver ELPA

Auckenthaler et al., Parallel Comput. 37 (2011), 783-794
Marek et al., J. Phys. Condens. Matter 26 (2014), 213201



Theta 11.7 petaFLOP/s

https://elpa.mpcdf.mpg.de

• Massively parallel
(efficient for 10k+ CPU cores)

• Used in more than 20 DFT software 
packages

Can we do better?

Matrix dimension

1 million x 1 million

1 Theta node = 64 CPU cores
Data from Dr. Álvaro Vázquez-Mayagoitia,
Argonne National Laboratory
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Massively parallel eigensolver ELPA

https://elpa.mpcdf.mpg.de/


Bypass diagonalization?



Kohn-Sham equations

Generalized eigenproblem

Basis set expansion

!h!"ψ# = ϵ#ψ#

𝐇𝐂 = 𝐒𝐂𝚺

ψ# 𝐫 =+
$

c#$φ$ 𝐫

φ!:  Basis functions
c"!:  Expansion coefficients

7

Recap:  Kohn-Sham density-functional theory (KS-DFT)
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Kohn-Sham equations

𝐧 𝐫 =+
#

f# ψ#(𝐫) %

Basis set expansion

!h!"ψ# = ϵ#ψ#

𝐇𝐂 = 𝐒𝐂𝚺

ψ# 𝐫 =+
$

c#$φ$ 𝐫

φ!:  Basis functions
c"!:  Expansion coefficients

𝐧 𝐫 =+
&,$

φ&∗ (𝐫)p&$φ$(𝐫)

Density matrix p#! can be computed 
from 𝐂 and 𝚺, or can be constructed 
as a function of 𝐇 and 𝐒
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Recap:  Kohn-Sham density-functional theory (KS-DFT)

Explicitly solve eigenproblem
“diagonalization”

Generalized eigenproblem



ELPA
Two-stage tridiagonalization 

optionally with GPU
O(N3)

Eigensolvers and density matrix solvers
(Sca)LAPACK

Tridiagonalization
O(N3)

EigenExa
Penta-diagonalization

O(N3)

MAGMA
Tridiagonalization with GPU

O(N3)

Direct eigensolvers
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ELPA
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SLEPc
Shift-and-invert plus 
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≤ O(N3)
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libOMM
Orbital minimization method

O(N3)

ELPA
Two-stage tridiagonalization 

optionally with GPU
O(N3)

NTPoly
Density matrix purification

O(N)

SLEPc
Shift-and-invert plus 

spectrum slicing
≤ O(N3)

PEXSI
Pole expansion and 
selected inversion

≤ O(N2)

Eigensolvers and density matrix solvers
(Sca)LAPACK

Tridiagonalization
O(N3)

EigenExa
Penta-diagonalization

O(N3)

FEAST
Contour integral

≤ O(N3)

MAGMA
Tridiagonalization with GPU

O(N3)

Direct eigensolvers
Iterative eigensolvers
Density matrix solvers
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Electronic structure codes

PEXSI

ELPA

SLEPc

EigenExa

libOMM

NTPoly

Solvers

MAGMA More ...

Matrices
(user format)

Matrices
(solver format)

Solutions
(user format)

Solutions
(solver format)

Unified interface for various solvers

Parallel matrix (inter-)conversion

Reliable default parameters

Recommendation of optimal solver

Multi-level parallelization

Yu et al., Comput. Phys. Commun. 222 (2018), 267-285
Yu et al., Comput. Phys. Commun. 256 (2020), 107459 9

ELSI:  connecting electronic structure codes and solvers



ELSI used in the electronic structure community

DFTB+

All-electron KS-DFT
Numeric atom-centered orbitals
Sparse matrices

Semi-empirical tight-binding
Slater-type orbitals
Highly sparse matrices

Pseudopotential KS-DFT
Pseudo atom-centered orbitals
More sparse matrices

DGDFT Pseudopotential KS-DFT
Adaptive local basis
Standard eigenproblems

Blum et al., Comput. Phys. Commun. 180 (2009), 2175-2196

García et al., J. Chem. Phys. 152 (2020), 204108

Hu et al., J. Chem. Phys. 143 (2015), 124110

Hourahine et al., J. Chem. Phys. 152 (2020), 124101
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§ Only compute selected elements of 𝐇− z" + µ 𝐒 $%

§ Computational cost
• 1D system:  O(N)
• 2D system:  O(N1.5)
• 3D system:  O(N2)

§ Generally applicable to insulating, semi-conducting, and 
metallic systems

§ Poles evaluated independently in parallel
(distributed across MPI tasks)

Lin et al., J. Phys. Condens. Matter 25 (2013), 295501
Lin et al., J. Phys. Condens. Matter 26 (2014), 305503

𝐏 =+
#

Im
w#

𝐇 − z# + µ 𝐒

𝐏:  Density matrix
𝐇:  Hamiltonian matrix
𝐒:  Overlap matrix
{z", w"}:  Poles
µ:  Chemical potential

Pole expansion and selected inversion (PEXSI)
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Dense and sparse matrix representation

Matrices in large systems tend to be sparse

(localized basis functions far from each other do not overlap)
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dense

Dense and sparse matrix representation

ü Fast, continuous access to matrix elements
ü Highly optimized linear algebra routines (BLAS)

for both CPUs and GPUs
X O(N2) memory consumption
X Not affordable for large N

Matrices in large systems tend to be sparse

(localized basis functions far from each other do not overlap)
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nnz_val
row_idx
col_ptr

dense sparse (CSC format)

Dense and sparse matrix representation

ü Fast, continuous access to matrix elements
ü Highly optimized linear algebra routines (BLAS)

for both CPUs and GPUs
X O(N2) memory consumption
X Not affordable for large N

ü O(N) memory consumption
ü Lower operation count (zeros not computed)
X Indirect access to matrix elements
? Customized BLAS routines

Matrices in large systems tend to be sparse

(localized basis functions far from each other do not overlap)

12
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Pole expansion and selected inversion (PEXSI)

DFT-PBE calculations with the FHI-aims code, 2,560 CPU cores on Cori-Haswell

1D Ge



13

Pole expansion and selected inversion (PEXSI)

DFT-PBE calculations with the FHI-aims code, 2,560 CPU cores on Cori-Haswell

1D Ge 2D MoS2



DFT-PBE calculations with the FHI-aims code, 2,560 CPU cores on Cori-Haswell

1D Ge 2D MoS2 3D Cu2BaSnS4
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Pole expansion and selected inversion (PEXSI)



Pole expansion and selected inversion (PEXSI)

3D graphite
FHI-aims, DFT-PBE

6,912 atoms
96,768 basis functions
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Pole expansion and selected inversion (PEXSI)

3D graphite
FHI-aims, DFT-PBE

6,912 atoms
96,768 basis functions

ELPA scales to ~20k CPU cores
PEXSI displays almost ideal scaling
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§ Iteratively “purify” density matrix to satisfy:
• Hermitian:  𝐏 = 𝐏∗
• Normalized:  Tr 𝐏 = N'"'()*+,
• Idempotent:  𝐏 = 𝐏-

§ 𝑓(7𝐏,):  Usually a matrix polynomial

§ Example:  2nd order trace resetting purification

σ, = sign N'"'()*+, − Tr 𝐏,
𝐏,.% = 𝐏, + σ, I − 𝐏, 𝐏, = 1 + σ, 𝐏, − σ,𝐏,-

§ Linear scaling via sparse matrix multiplication

Density matrix purification (NTPoly)

<𝐇 = 𝐒)*/%𝐇𝐒)*/%

𝐇𝐂 = 𝐒𝐂𝚺

<𝐏, = 𝑓, <𝐇

<𝐏-.* = 𝑓(<𝐏-)

𝐏 = 𝐒)*/%<𝐏𝐒)*/%

“purify”

Goedecker, Rev. Mod. Phys. 71 (1999), 1085-1123
Bowler and Miyazaki, Rep. Prog. Phys. 75 (2012), 036503
Dawson and Nakajima, Comput. Phys. Commun. 225 (2018), 154-165
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§ Iteratively “purify” density matrix to satisfy:
• Hermitian:  𝐏 = 𝐏∗
• Normalized:  Tr 𝐏 = N'"'()*+,
• Idempotent:  𝐏 = 𝐏-

§ 𝑓(7𝐏,):  Usually a matrix polynomial

§ Example:  2nd order trace resetting purification

σ, = sign N'"'()*+, − Tr 𝐏,
𝐏,.% = 𝐏, + σ, I − 𝐏, 𝐏, = 1 + σ, 𝐏, − σ,𝐏,-

§ Linear scaling via sparse matrix multiplication

§ Linear scaling density-functional perturbation theory 
(DFPT) in FHI-aims powered by NTPoly

Shang et al., Comput. Phys. Commun. 258 (2021), 107613

Density matrix purification (NTPoly)

<𝐇 = 𝐒)*/%𝐇𝐒)*/%

𝐇𝐂 = 𝐒𝐂𝚺

<𝐏, = 𝑓, <𝐇

<𝐏-.* = 𝑓(<𝐏-)

𝐏 = 𝐒)*/%<𝐏𝐒)*/%

“purify”

15



Silicon supercell

DFTB calculations with the DFTB+ code, 2,560 CPU cores on Cori-Haswell

NTPoly settings:
• 4th order TRS method
• 10-5 truncation threshold
• 10-2 convergence criterion

Same accuracy:  Band structure 
energies agree across the three 
solvers within 10-5 eV/atom

16

Density matrix purification (NTPoly)
Box of water molecules



GPU computing



§ Strengths of GPUs
• High parallel performance (thousands of cores)
• Power efficiency

§ As of today, 6 of the top 10 supercomputers in the world 
have GPU accelerators

§ GPUs will power the first exascale (1018 floating point 
operations per second) supercomputers in the US

CPU

GPU

https://developer.nvidia.com/cuda-zone

Graphics processing unit (GPU)

17
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§ Strengths of GPUs
• High parallel performance (thousands of cores)
• Power efficiency

§ As of today, 6 of the top 10 supercomputers in the world 
have GPU accelerators

§ GPUs will power the first exascale (1018 floating point 
operations per second) supercomputers in the US

§ GPU acceleration in FHI-aims
• Hamiltonian integration
• Electron density
• Forces and stress tensor
• Eigensolver (GPU-accelerated ELPA)

Huhn et al., Comput. Phys. Commun. 254 (2020), 107314
Yu et al., Comput. Phys. Commun. 262 (2021), 107808

CPU

GPU

https://developer.nvidia.com/cuda-zone

Graphics processing unit (GPU)
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https://developer.nvidia.com/cuda-zone


GPU computing

CPU memory space

GPU memory space
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CPU memory space

GPU memory space

time

data 1

data 1 data 2 data 3

data 4input outputdata 2 data 3

data 4

compute compute

compute

GPU computing
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• Reduce communication
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GPU computing

• Reduce communication
• Keep GPU saturated
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CPU memory space

GPU memory space

time

big data 1

big data 1 big data 2 big data 3

big data 4input output

big data 4

do something useful do something else

compute computecompute

GPU computing

• Reduce communication
• Keep GPU saturated
• Overlap CPU and GPU activities
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CPU memory space

GPU memory space

time

big data 1

big data 1 big data 2 big data 3

big data 4input output

big data 4

• Reduce communication
• Keep GPU saturated
• Overlap CPU and GPU activities

do something useful do something else

compute computecompute

GPU computing

GPU-accelerated ELPA eigensolver
Yu et al., Comput. Phys. Commun. 262 (2021), 107808
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Full matrix A Banded matrix B Tridiagonal matrix T

Two-stage diagonalization
1) Full matrix A à banded matrix B
2) Banded matrix B à tridiagonal matrix T
3) Solve tridiagonal T
4) Tridiagonal eigenvectors à banded
5) Banded eigenvectors à full

GPU-accelerated dense linear algebra by cuBLAS
GPU-accelerated Householder transformations by CUDA
Minimized communication between CPUs and GPUs

GPU acceleration in the ELPA eigensolver

19
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GPU-accelerated dense linear algebra by cuBLAS
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GPU acceleration in the ELPA eigensolver
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Largest problem solved by ELPA-GPU:

1,769,472 x 1,769,472 complex matrix
all eigenvalues and eigenvectors
4,000 Summit nodes (24,000 GPUs)

Dr. Gabriel Wlazłowski, Warsaw University of Technology
https://gitlab.fizyka.pw.edu.pl/wtools/wslda

https://gitlab.fizyka.pw.edu.pl/wtools/wslda


ELPA GPU performance on the Summit supercomputer

14.8x

2.2x7.3x

Less work per GPU, more communication

1 Summit node = 42 CPU cores + 6 GPUs

20

40,000 x 40,000 real matrix
all eigenvectors computed



14.8x

2.2x

20.8x

3.2x
7.3x

11.3x

1 Summit node = 42 CPU cores + 6 GPUs

Larger speedup
for larger workload

40,000 x 40,000 real matrix
all eigenvectors computed

40,000 x 40,000 complex matrix
all eigenvectors computed

ELPA GPU performance on the Summit supercomputer
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4.6x

12.5x 13.4x

6.7x

Larger speedup
for larger workload

1 Summit node = 42 CPU cores + 6 GPUs 21

100,000 x 100,000 real matrix
all eigenvectors computed

100,000 x 100,000 complex matrix
all eigenvectors computed

ELPA GPU performance on the Summit supercomputer



ELPA GPU in FHI-aims

Cu2BaSnS4

FHI-aims DFT-PBE
§ 1 Summit node:

• 42 IBM POWER9 CPU cores
• 6 NVIDIA V100 GPUs

§ 1 Cori node:
• 32 Intel Haswell CPU cores

22

Same accuracy



FHI-aims DFT-PBE
§ 1 Summit node:

• 42 IBM POWER9 CPU cores
• 6 NVIDIA V100 GPUs

§ 1 Cori node:
• 32 Intel Haswell CPU cores

22

ELPA GPU in FHI-aims

Cu2BaSnS4

Same accuracy



Frozen core approximation



Kohn-Sham eigenvalue problem

Partition 𝐇, 𝐒, 𝐂 matrices into four blocks

“Freeze” the core-core (cc) block
à frozen core Hamiltonian @𝐇//

Diagonalize @𝐇// (smaller than 𝐇)

23

cc cv

vc vv

frozen

Frozen core approximation

Yu et al., J. Chem. Phys. 154 (2021): 224107

𝐇𝐂 = 𝐒𝐂𝚺

𝐇 = 𝐇(( 𝐇(/
𝐇/( 𝐇//

,			𝐒 = 𝐒(( 𝐒(/
𝐒/( 𝐒//

@𝐇// = 𝐋//$%(𝐇// + 𝐒/(𝐇((𝐒(/ − 𝐇/(𝐒𝐜/ − 𝐒/(𝐇(/)(𝐋//∗ )$%
𝐋//𝐋//∗ = 𝐒// − 𝐒/(𝐒(/



Frozen core approximation

24103 compound benchmark set:  Huhn and Blum, Phys. Rev. Materials 1 (2017), 033803



Frozen core approximation

FHI-aims, DFT-PBE

CsPbBr3
4x4x4 supercell
2,560 atoms
94,208 basis functions
28,672 frozen
Cori supercomputer (Haswell partition)

25

All electron
Frozen core (FC99+C+V)
Same accuracy
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Large KS-DFT simulations can be done with FHI-aims

§ Linear scaling integration scheme (previous talk by Dr. Ville Havu)

§ Many scalable electronic structure solvers through the ELSI interface
• ELPA2 eigensolver highly efficient for systems with up to 1k atoms
• Consider density matrix solvers for sparse, low-dimensional systems

§ Leverage the power of GPUs

§ Frozen core approximation useful for heavy elements

Summary

Happy computing !!
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Large KS-DFT simulations can be done with FHI-aims

§ Linear scaling integration scheme (previous talk by Dr. Ville Havu)

§ Many scalable electronic structure solvers through the ELSI interface
• ELPA2 eigensolver highly efficient for systems with up to 1k atoms
• Consider density matrix solvers for sparse, low-dimensional systems

§ Leverage the power of GPUs

§ Frozen core approximation useful for heavy elements

Some exciting achievements in the community

§ Interatomic potential from deep learning
§ Single/half precision with no loss of accuracy
§ Utilization of tens of thousands of GPUs

à Simulation of more than a hundred million atoms

Summary

Das et al., in Proceedings of SC19’, IEEE, 2019, pp. 1-11
Jia et al., in Proceedings of SC20’, IEEE, 2020, pp. 1-14
Schade et al., arXiv:2104.08245 (2021)

Happy computing !!
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