Numerical Methods for DFT and Beyond

Ville Havu Wednesday, 27 October 2021

First look

Bulk Si, tight settings, 2 – 1024 atoms in a unit cell, 1 k-point, 128 MPI-tasks (2 x 64 AMD Rome), 256 GB memory

> gcc, OpenMPI, OpenBLAS, ScaLAPACK

Second look

Bulk Si, tight settings, 1458 atoms in a unit cell 256 - 1152 MPI-tasks

Integration in DFT

Integration - calculation of matrix elements

$$h_{ij} = \int d\mathbf{r} \, \varphi_i(\mathbf{r}) h_{KS}(\mathbf{r}) \varphi_j(\mathbf{r}) \quad h_{KS}(\mathbf{r}) = -\frac{1}{2} \Delta + V_{\text{eff}}(\mathbf{r})$$

 $S_{ij} = \int d\mathbf{r} \, \varphi_i(\mathbf{r}) \varphi_j(\mathbf{r})$

Gaussian basis functions \rightarrow many analytic formulae available

Plane wave basis functions \rightarrow fast Fourier transform does the trick

Numerical atom centered basis functions \rightarrow need atom centered grids

$$h_{ij} = \sum_{k} \varphi_i(\mathbf{r}_k) h_{KS}(\mathbf{r}_k) \varphi_j(\mathbf{r}_k) w_k$$
$$s_{ij} = \sum_{k} \varphi_i(\mathbf{r}_k) \varphi_j(\mathbf{r}_k) w_k$$

Aalto University School of Science

Grid points around the atom, location \mathbf{r}_k , weight w_k

Grid-based integration

Many atoms, large overlapping grids, need to consider integration points in batches

In each batch:

1. Compute the matrices

$$M_{jk} = \varphi_j(\mathbf{r}_k) \sqrt{w_k}$$
$$N_{ik} = h_{KS}(\mathbf{r}_k) \varphi_i(\mathbf{r}_k) \sqrt{w_k}$$

2. Sum up the local contribution

$$h_{ij,loc} = \sum_{k} M_{jk} N_{ik}^*$$

When all batches done sum up:

$$h_{ij} = \sum h_{ij,loc}$$

Havu et. at. Journal of Computational Physics 228, 8367-8379

Split recursively into batches of equal size

Grid-based integration

Many atoms, large overlapping grids, need to consider integration points in batches

School of Science

In each batch:

1. Compute the matrices

$$M_{jk} = \varphi_j(\mathbf{r}_k) \sqrt{w_k}$$

$$N_{ik} = h_{KS}(\mathbf{r}_k)\varphi_i(\mathbf{r}_k)\sqrt{w_k}$$

2. Sum up the local contribution

$$h_{ij,loc} = \sum_{k} M_{jk} N_{ik}^*$$

Need to evaluate only non-zero basis functions in each batch

Matrix-matrix product (BLAS3 operation)

When all batches done sum up:

$$h_{ij} = \sum h_{ij,loc}$$

MPI_Allreduce makes operation parallel

Complexity: O(N) points, O(1) functions / batch $\rightarrow O(N)$ in total

Performance and scalability: basic algorithm

Improving integration with local basis storage and load balancing

The basic algorithm works well in many cases but can be improved

Per batch for each MPI-task:

1. Compute the matrices

 $M_{jk} = \varphi_j(\mathbf{r}_k) \sqrt{w_k}$ $N_{ik} = h_{KS}(\mathbf{r}_k) \varphi_i(\mathbf{r}_k) \sqrt{w_k}$

2. Sum up the local contribution

 $\tilde{h}_{ij,loc} = \sum_{k} M_{jk} N_{ik}^* \quad \longleftarrow \quad$

When all batches done sum up:

$$h_{ij} = \sum \tilde{h}_{ij,loo}$$

Store only the elements relevant to the MPI-task doing the integration in $h_{ij,loc} \rightarrow$ no global matrix storage. It follows:

- Batches need to be distributed to MPI-tasks by location, not by load
- Load imbalance can follow to be compensated by load balancing
- Drawback: some more exotic functionality may lack support

use_l ocal _i ndex l oad_bal anci ng

Basis functions of this atom need to be stored only on tasks handling these batches

Improving integration with local basis storage and load balancing

Local indexing storage schemes

Global sparse matrix storage

- All MPI-tasks store the same matrix
- Sparse storage format
 - Entries
 - Row indices of entries
 - Column pointers to row indices
- Storage cost O(N)

chool of Science

Simply synchronization with MPI_AllReduce

Local dense storage

- MPI-tasks store only elements relevant to its batches
- Dense storage format
 - Larger system storage cost up
 - More MPI-tasks storage cost down
- Complex synchronization with point-topoint communication

H indices indptr (a) Globally-Indexed Sparse

(b) Locally-Indexed Dense

Density update

The density at each grid point follows from the single-particle orbitals: O(*N*) orbitals x O(*N*) grid points = O(N^2) if calculated directly

$$n(\mathbf{r}_k) = \sum_n f_n |\psi_n(\mathbf{r}_k)|^2$$

But
$$\psi_n(\mathbf{r}) = \sum_i c_n^i arphi_i(\mathbf{r})$$
 and it follows

$$n(\mathbf{r}_{k}) = \sum_{n} f_{n} \sum_{i} c_{n}^{i*} \varphi_{i}(\mathbf{r}_{k}) \sum_{j} c_{n}^{j} \varphi_{j}(\mathbf{r}_{k}) = \sum_{ij} \varphi_{i}(\mathbf{r}_{k}) \varphi_{j}(\mathbf{r}_{k}) \sum_{n} f_{n} c_{n}^{i*} c_{n}^{j}$$

$$O(1) \text{ for localized basis} = D_{ij}$$
Formally

o a very small prefactor

O(N³) but

o *D*_{ij} is sparse

Performance and scalability

Beyond DFT – local is not enough

Aalto University School of Science

Input files and output file analysis made with GIMS: https://gims.ms1p.org/

Beyond DFT – the exchange operator

To go beyond local and semilocal approximations one very often needs the exchange operator:

$$\hat{K}\psi_n(\mathbf{r}) = \sum_m f_m \int \frac{\psi_m^*(\mathbf{r}')\psi_n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}'\psi_m(\mathbf{r})$$

In basis representation, that is:

$$K_{ij} = \sum_{kl} (ik|lj) D_{kl} \qquad (ij|kl) = \iint \frac{\varphi_i^*(\mathbf{r})\varphi_j(\mathbf{r})\varphi_k^*(\mathbf{r}')\varphi_l(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

Resolution of identity

Four center integrals (ij | kl) are very expensive. Need to reduce costs. (ij|kl)

$$\phi = \iint rac{\varphi_i^*(\mathbf{r})\varphi_j(\mathbf{r})\varphi_k^*(\mathbf{r}')\varphi_l(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} d\mathbf{r}'$$

Pair products are too many, expand in auxiliary functions (resolution of identity (RI), variational density fitting):

$$arphi_i(\mathbf{r})arphi_j(\mathbf{r}) = \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r})$$

$$(ij|kl) = \sum_{\mu\nu} C^{\mu}_{ij} V_{\mu\nu} C^{\nu}_{kl}$$
$$V_{\mu\nu} = \iint \frac{P_{\mu}(\mathbf{r}) P_{\nu}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Four centers becomes two indices. Need to:

- 1. Select the auxiliary basis functions
- 2. Define, how to compute the coefficients C_{ij}

Resolution of identity

$$\varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) = \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r})$$

2. To compute the coefficients, minimize:

Option a: minimize the norm $(\delta \rho_{ij} \, \delta \rho_{ij})$

Option **b**: minimize the norm $(\delta \rho_{ij} | \delta \rho_{ij})$

Ren et al. *New J. Phys.* **14** 053020 Ihrig et al. *New J. Phys.*, **17**, 093020 Levchenko et al. *Comp. Phys. Comm.*, **192**, 60 Four centers becomes two indices. Need to:

- 1. Select the auxiliary basis functions
- 2. Define, how to compute the coefficients C_{ij}

$$\begin{split} \text{imize:} \quad & \delta\rho_{ij}(\mathbf{r}) = \varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) - \sum_{\mu} C_{ij}^{\mu} P_{\mu}(\mathbf{r}) \\ \\ & \delta\rho_{ij} \end{pmatrix} \quad \begin{bmatrix} C_{ij}^{\mu} = \sum_{\nu} (ij\nu) S_{\nu\mu}^{-1} & (ij\nu) = \int \varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) P_{\nu}(\mathbf{r}) \, d\mathbf{r} \\ \\ & S_{\mu\nu} = \int P_{\nu}(\mathbf{r}) P_{\mu}(\mathbf{r}) \, d\mathbf{r} \quad \text{RI-SVS} \\ \\ & \delta\rho_{ij} \end{pmatrix} \quad \begin{bmatrix} C_{ij}^{\mu} = \sum_{\nu} (ij|\nu) V_{\nu\mu}^{-1} & (ij|\nu) = \int \int \frac{\varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) P_{\nu}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} d\mathbf{r}' \\ \\ & V_{\mu\nu} = \int \int \frac{P_{\mu}(\mathbf{r}) P_{\nu}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \quad \text{RI-V} \quad \begin{array}{c} \text{Method of choice due to} \\ \text{accuracy and reliability} \\ \\ & K_{ij} = \sum_{kl} \sum_{\mu\nu} (ik|\mu) V_{\mu\nu}^{-1}(\nu|jl) D_{kl} = \sum_{\mu} \sum_{kl} \left(\sum_{\nu} C_{ik}^{\nu} V_{\nu\mu}^{1/2} \right) \left(\sum_{\nu} C_{jl}^{\nu} V_{\nu\mu}^{1/2} \right) D_{kl} \end{split}$$

Resolution of identity

$$\varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) = \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r})$$

Four centers becomes two indices. Need to:

- 1. Select the auxiliary basis functions
- 2. Define, how to compute the coefficients C_{ij}

1. Construct the auxiliary basis with the products of the orbital basis functions:

- a. form on site-products of the radial functions $u_{sk_1l_1}(r) u_{sk_2l_2}(r)$
 - (optional) add radial functions to the construction of auxiliary basis only (for_aux_keyword)
- b. remove linear dependencies
- c. add angular components with spherical harmonics $Y_{lm}(\phi, \theta)$

atom-centered auxiliary basis $\{P_{\mu}({f r})\}$

Ren et al. *New J. Phys.* **14** 053020 Ihrig et al. *New J. Phys.*, **17**, 093020 Levchenko et al. *Comp. Phys. Comm.*, **192**, 60

Localized resolution of identity

$$\varphi_i(\mathbf{r})\varphi_j(\mathbf{r}) = \sum_{\mu} C^{\mu}_{ij} P_{\mu}(\mathbf{r})$$

atom-centered auxiliary basis
$$\{P_{\mu}({f r})\}$$

There is still a problem: localized basis functions are expanded over all atoms: C_{ij}^{μ} is dense

Fix with localized RI: require
$$C^{\mu}_{ij} = 0$$
, for $\mu \notin \mathcal{P}(IJ)$

Expand the pair (*i*,*j*) using only auxiliary functions on the same atoms

$$C_{ij}^{\mu} = \sum_{\nu \in \mathcal{P}(IJ)} (ij|\nu) L_{\nu\mu}^{I}$$
$$L_{\nu\mu}^{IJ} = (V^{IJ})_{\nu\mu}^{-1}$$

Aalto University

School of Science

RI-LVL

Better scaling implementation of RI-V

RI_method defaults to

- I ∨I for HF and hybrid functionals
- v for MP2, RPA and GW

Ihrig et al. New J. Phys., 17, 093020

Periodic RI

Block-like basis functions
$$\varphi_{i\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \varphi_i(\mathbf{r}-\mathbf{R})$$

In reciprocal space, Fourier transform:

$$\begin{split} K_{ij}(\mathbf{k}) &= \frac{1}{N_{\mathbf{q}}} \sum_{kl,\mathbf{q}} D_{kl}(\mathbf{q}) \iint \frac{\varphi_{i\mathbf{k}}^{*}(\mathbf{r})\varphi_{k\mathbf{q}}(\mathbf{r})\varphi_{l\mathbf{q}}^{*}(\mathbf{r}')\varphi_{j\mathbf{k}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} d\mathbf{r}' \\ &= \frac{1}{N_{\mathbf{q}}} \sum_{kl,\mathbf{q}} D_{kl}(\mathbf{q}) \sum_{\nu\mu} C_{ik}^{\mu}(\mathbf{k},\mathbf{q}) V_{\mu\nu}(\mathbf{k} - \mathbf{q}) C_{lj}^{\nu}(\mathbf{q},\mathbf{k}) \\ P_{\mu}^{\mathbf{k}}(\mathbf{r}) &= \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} P_{\mu}(\mathbf{r} - \mathbf{R}) \\ \varphi_{i\mathbf{k}}^{*}(\mathbf{r})\varphi_{k\mathbf{q}}^{*}(\mathbf{r}) &= \sum_{\mu} C_{ik}^{\mu}(\mathbf{k},\mathbf{q}) P_{\mu}^{\mathbf{q}-\mathbf{k}}(\mathbf{r}) \quad \mathsf{RI-V} \end{split}$$

Using **RI-LVL** gives

$$C^{\mu}_{ik}(\mathbf{k},\mathbf{q}) = C^{\mu}_{ik}(-\mathbf{k},\mathbf{R}_0) + C^{\mu}_{ki}(\mathbf{q},\mathbf{R}_0)$$

but the matrix C^{μ}_{ik} is not sparse... still used for periodic GW

Aalto University
School of ScienceRen et al. Phys. Rev. Materials 5, 013807

In real space, sum up all periodic images:

$$K_{ij}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} X_{ij}(\mathbf{R}) \qquad D_{kl}(\mathbf{R}') = \frac{1}{N_{\mathbf{q}}} \sum_{\mathbf{k}} D_{kl}(\mathbf{k}) e^{-i\mathbf{k}\cdot\mathbf{R}'}$$
$$X_{ij}(\mathbf{R}) = \sum_{kl} \sum_{\mathbf{R}'} D_{kl}(\mathbf{R}') \sum_{\mathbf{R}''} \iint \frac{\varphi_i(\mathbf{r})\varphi_k(\mathbf{r}-\mathbf{R}')\varphi_j(\mathbf{r}'-\mathbf{R})\varphi_l(\mathbf{r}'-\mathbf{R}-\mathbf{R}'')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$
$$= \sum_{k\mathbf{R}'} \sum_{l\mathbf{R}''} \sum_{\mu\mathbf{Q}'} \sum_{\nu\mathbf{Q}''} C_{ik(\mathbf{R}')}^{\mu(\mathbf{Q}')} V_{\mu\nu(\mathbf{R}+\mathbf{Q}''-\mathbf{Q}')} C_{jl(\mathbf{R}'')}^{\nu(\mathbf{Q}'')} D_{kl}(\mathbf{R}+\mathbf{R}''-\mathbf{R}')$$

RI-LVL:
$$Q' = 0$$
 or $Q' = R'$ and $Q'' = 0$ or $Q'' = R''$

Plus:

- Born-von Karman periodic V_{µv}
- Sparsity of $X_{ii}(\mathbf{R})$
- Screening of small elements in X_{ii} (**R**)

Levchenko et al. Comp. Phys. Comm., 192, 60

Performance and scalability HSE06

Performance and scalability HSE06

atoms

HSE06: tight \rightarrow intermediate

For practical calculations *intermediate* settings are often sufficient

GPU computing

Certain operations can be offloaded to GPUs. The results are best when the operations:

- are vectorizable
- contain no branching statements
- have minimal communication between CPU and GPU

How to get it? Build a GPU enabled binary and set use_gpu . true.

Conclusions

Grid based operations

- O(N) scaling
- Modest prefactor
- Use
 - use_l ocal _i ndex
 when possible
 - l oad_bal anci ng when needed
- GPU support available
 - experiment with poi nts_i n_batch

RI operations

- Also O(N) scaling
- Much larger prefactor and cost of initialization
- Use the default method (RI-V or RI-LVL) or select with RI_method
- Test *intermediate* settings
- Experiment with for_aux to check the accuracy of the auxiliary basis

Thank you for your attention

Ville Havu Wednesday, 27 October 2021

